IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Origin of unpleasant smelling sulphur compounds during wine fermentation

Origin of unpleasant smelling sulphur compounds during wine fermentation

Abstract

The wine sector is undergoing considerable transformation, particularly as a result of climate change and increasing consumer expectations for quality products, in a globalised and increasingly competitive market. Therefore, the control of the sensory quality of wines is a major challenge that the actors of the sector have to overcome, promoting the formation of compounds with positive contribution while limiting the production of off-flavours. This requires a thorough understanding of the underlying mechanisms and the factors that can modulate these productions. Significant research efforts have been made to produce this information for positive compounds, but data on negative molecules remain very sparse.

Volatile sulphur compounds (VSCs) are considered as responsible for the reduction defect of wines, a regular issue for winemakers. These molecules, belonging mainly to the chemical families of thiols, thioesters, sulphides and disulphides, are formed during the fermentation and aging of wines. Their production involves the metabolism of yeast but also chemical reactions, as well responsible for many interconversions between these compounds. The main objective of our project was to provide a comprehensive view of the formation of VSCs during fermentation and its regulation by environmental factors.

To elucidate the metabolic and chemical molecular basis of these production and the better understand the regulatory mechanisms, two complementary lines of research were developed. A chemical approach spiking ongoing fermentation with sulphur compounds and incubating samples with and without cells was carried out. This enabled us to discriminate between enzymatic and chemical reactions within the VSCs formation network and to unravel the interconnections between compounds. Furthermore, the dynamics of formation of VSCs was monitored both in liquid samples and in the headspace of fermenters, directly connected to a gas chromatography device to detect extremely volatile compounds, as sulphide and methanethiol. The sequence of VSCs production, including the transient formation of some molecules, was therefore established. Our data clearly showed the involvement of methionine and cysteine as precursors for the biological formation of VSCs, as well as the key role of methanethiol as metabolic hub. In addition, our results highlighted the existence of chemical and biological interconversions between thiols, thioesters and disulphides that contribute to the VSC profile of wines. Overall, extending our knowledge on the VSCs formation and origin during wine fermentation, this study provided clues for the design of strategies to control the formation of these unpleasant smelling molecules during wine fermentation

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Carole Camarasa

¹INRA Montpellier France

Contact the author

Keywords

volatile sulphur compounds, metabolism, fermentation, ageing of wine

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Phenolic, antioxidant, and sensory heterogeneity of oenological tannins: what are their possible winemaking applications?

AIM: The aim of this work was to characterize 18 oenological tannins by the polyphenolic, antioxidant, and sensory point of view.

The effect of ozonated water treatment on the metabolic profile and resistance of vines to Downy and powdery mildew 

Ozone is a potent oxidizing compound that quickly decomposes into oxygen without residues. Previous works reported that ozone is not only a disinfectant that directly harms the pathogens of the vine but also activates systemic defense systems in the plant by activating oxidative stress. We assume these systemic defense mechanisms are essential to the vines’ resistance to downy and powdery mildew (Plasmopara viticola & Erysiphe necator, respectively). The goals of the research are to examine the effect of spraying with ozone water on the plant’s resistance against the mentioned pathogens as well as to characterize the metabolic profile of the plants treated with ozone as well as physiological characteristics in the vines such as the level of Photosynthesis and crop yield. Vines in the vineyard sprayed with ozone water at concentrations of 2 and 4 PPM weekly and biweekly, untreated control & conventional spray. Leaves were taken from vines 2,4,7,9 and 11 days after exposure to ozone and inoculated with the pathogens.

Investigating three proximal remote sensing techniques for vineyard yield monitoring

Yield monitoring can provide the winegrowers with information for precise production inputs during the season, thereby, ensuring the best possible harvest. Yield estimation is currently achieved through an intensive process that is destructive and time-consuming. However, remote sensing provides a group of proximal technologies and techniques for a non-destructive and less time-consuming method for yield monitoring.The objective of this study was to analyse three different approaches, for measuring grapevine yield close to harvest.

Testing the pathogen e-learning and field training course on grapevine virus knowledge and management

One of the reasons of the spread of grapevine virus diseases in
vineyards around the world is the lack of knowledge by the main actors of the wine sector. To face this problem, five partners worked together to develop the PAThOGEN project, a training program aimed to improve grapevine virus knowledge and management. The partnership gathers one French technical center (IFV), one Spanish university (USC), one Italian applied research center (CREA), one Spanish foundation
specialized in training and technology transfer (FEUGA) and one Italian SME specialized in the development of informatics tools and in knowledge transfer (HORTA).The objectives of PAThOGEN are: (i) to develop and
maintain a high-quality work-based Vocational and Education Training program, (ii) to improve the skills of professionals of the wine sector.

Immunotestπ: a new test for the determination of proteic stability in white and rosé wines

Proteic haze is a problem which may occur in all fruit-based beverages and fermented juices (beer, cider, wine). When it occurs, the economic loss is important.