IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Origin of unpleasant smelling sulphur compounds during wine fermentation

Origin of unpleasant smelling sulphur compounds during wine fermentation

Abstract

The wine sector is undergoing considerable transformation, particularly as a result of climate change and increasing consumer expectations for quality products, in a globalised and increasingly competitive market. Therefore, the control of the sensory quality of wines is a major challenge that the actors of the sector have to overcome, promoting the formation of compounds with positive contribution while limiting the production of off-flavours. This requires a thorough understanding of the underlying mechanisms and the factors that can modulate these productions. Significant research efforts have been made to produce this information for positive compounds, but data on negative molecules remain very sparse.

Volatile sulphur compounds (VSCs) are considered as responsible for the reduction defect of wines, a regular issue for winemakers. These molecules, belonging mainly to the chemical families of thiols, thioesters, sulphides and disulphides, are formed during the fermentation and aging of wines. Their production involves the metabolism of yeast but also chemical reactions, as well responsible for many interconversions between these compounds. The main objective of our project was to provide a comprehensive view of the formation of VSCs during fermentation and its regulation by environmental factors.

To elucidate the metabolic and chemical molecular basis of these production and the better understand the regulatory mechanisms, two complementary lines of research were developed. A chemical approach spiking ongoing fermentation with sulphur compounds and incubating samples with and without cells was carried out. This enabled us to discriminate between enzymatic and chemical reactions within the VSCs formation network and to unravel the interconnections between compounds. Furthermore, the dynamics of formation of VSCs was monitored both in liquid samples and in the headspace of fermenters, directly connected to a gas chromatography device to detect extremely volatile compounds, as sulphide and methanethiol. The sequence of VSCs production, including the transient formation of some molecules, was therefore established. Our data clearly showed the involvement of methionine and cysteine as precursors for the biological formation of VSCs, as well as the key role of methanethiol as metabolic hub. In addition, our results highlighted the existence of chemical and biological interconversions between thiols, thioesters and disulphides that contribute to the VSC profile of wines. Overall, extending our knowledge on the VSCs formation and origin during wine fermentation, this study provided clues for the design of strategies to control the formation of these unpleasant smelling molecules during wine fermentation

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Carole Camarasa

¹INRA Montpellier France

Contact the author

Keywords

volatile sulphur compounds, metabolism, fermentation, ageing of wine

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

A new graphical interface as a tool to integrate data from GC-MS and UPLC-MS-QTOF: new compounds related with port wine aging

Port wine value is related to its molecular profile resulting from the changes occurring during the ageing period. It is of empirical knowledge that the style is greatly affected by the oxidation regimens, i.e. bottle versus barrel storage

Développement du concept d’Appellation d’Origine Contrôlée et d’Indication Géographique

L’identification des produits par le nom de la ville, de la région, de la province d’origine d’un produit tend aujourd’hui à se développer partout dans le monde et notamment dans le secteur agro-alimentaire, mais aussi dans les secteurs des produits artisanaux.

EFFECTS OF HYDROXYTYROSOL ON THE CHEMICAL PROFILE AND SENSORY ATTRIBUTES OF A RED TUSCAN WINE

The chemical profile and sensory attributes were studied in Borrigiano IGT Toscana wine (Italy), a blend of Sangiovese 85% and Cabernet Sauvignon 15% grapes harvested in September 2020, where 2-(3,4-dihydroxyphenyl)ethanol (hydroxytyrosol, HT, [1]) was added to a 750-ml wine bottle in 3 different amounts (30, 60, 120 mg) and compared with the control (no HT addition). The study aimed to evaluate whether Polyphenol-HT1®, a high purity HT (>99%) produced by Nova Mentis using biotechnology, could be used as a supplement to sulfites and how it would impact the sensory and chemical profile of this wine [2]. Each sample was prepared in triplicate.

Terroir in Tasting: A sensory approach for marketing fine Australian wines of provenance as memorable experiences

Aims: Establishing an image of fine wine through the Geographical Indication (GI) system is of interest to the Australian wine sector. Beyond provenance, the sensory experience of fine wine is often linked to consumption with appropriate foods. For this purpose, studies were undertaken to understand consumer perceptions of what

Plastic cover film on table grapes from field to cold storage

Plastic film covering is a technique largely used in viticulture to protect table grapes vines from adverse weather conditions and to reduce the negative effects of grapevine fungi disease. Plastic film composition affects solar radiation income inside the covering with effects on sunlight wavelengths in relation to different absorbance and reflectance. The interaction of selected light ranges with vines could influence grape ripening and yield and consequently influence shelf life.