IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Origin of unpleasant smelling sulphur compounds during wine fermentation

Origin of unpleasant smelling sulphur compounds during wine fermentation

Abstract

The wine sector is undergoing considerable transformation, particularly as a result of climate change and increasing consumer expectations for quality products, in a globalised and increasingly competitive market. Therefore, the control of the sensory quality of wines is a major challenge that the actors of the sector have to overcome, promoting the formation of compounds with positive contribution while limiting the production of off-flavours. This requires a thorough understanding of the underlying mechanisms and the factors that can modulate these productions. Significant research efforts have been made to produce this information for positive compounds, but data on negative molecules remain very sparse.

Volatile sulphur compounds (VSCs) are considered as responsible for the reduction defect of wines, a regular issue for winemakers. These molecules, belonging mainly to the chemical families of thiols, thioesters, sulphides and disulphides, are formed during the fermentation and aging of wines. Their production involves the metabolism of yeast but also chemical reactions, as well responsible for many interconversions between these compounds. The main objective of our project was to provide a comprehensive view of the formation of VSCs during fermentation and its regulation by environmental factors.

To elucidate the metabolic and chemical molecular basis of these production and the better understand the regulatory mechanisms, two complementary lines of research were developed. A chemical approach spiking ongoing fermentation with sulphur compounds and incubating samples with and without cells was carried out. This enabled us to discriminate between enzymatic and chemical reactions within the VSCs formation network and to unravel the interconnections between compounds. Furthermore, the dynamics of formation of VSCs was monitored both in liquid samples and in the headspace of fermenters, directly connected to a gas chromatography device to detect extremely volatile compounds, as sulphide and methanethiol. The sequence of VSCs production, including the transient formation of some molecules, was therefore established. Our data clearly showed the involvement of methionine and cysteine as precursors for the biological formation of VSCs, as well as the key role of methanethiol as metabolic hub. In addition, our results highlighted the existence of chemical and biological interconversions between thiols, thioesters and disulphides that contribute to the VSC profile of wines. Overall, extending our knowledge on the VSCs formation and origin during wine fermentation, this study provided clues for the design of strategies to control the formation of these unpleasant smelling molecules during wine fermentation

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Carole Camarasa

¹INRA Montpellier France

Contact the author

Keywords

volatile sulphur compounds, metabolism, fermentation, ageing of wine

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Red wine extract and resveratrol from grapevines could counteract AMD by inhibiting angiogenesis promoted by VEGF pathway in human retinal cells

Age-related macular degeneration (AMD) that is the main cause of visual impairment and blindness in Europe which is characterized by damages in the central part of the retina, the macula. This degenerative disease of the retina is mainly due to the molecular mechanism involving the production and secretion of vascular endothelial growth factor (VEF). Despite therapeutic advances thanks

Distribution of fungicide-resistant Botrytis cinerea mutations in the Tokaj and Eger wine regions

Botrytis cinerea is one of the most widespread host-specific fungal pathogens, causing significant yield losses and economic damage to vineyards every year.

Effects of different soil types and soil management on greenhouse gas emissions 

Soil is important in the carbon cycle and the dynamics of greenhouse gases (CO2, CH4 and N2O). Key soil characteristics, such as organic matter content, texture, structure, pH and microbial activity, play a determining role in GHG emissions[1]. The objective of the study is to delimit different types of soil, with different soil management and to be able to verify the differences in CO2, CH4 and N2O emissions. The study was carried out in a vineyard of Bodegas Campo Viejo in Logroño (La Rioja), whose plant material is Vitis vinifera L. cv. Tempranillo.

Impact of oenological tannins on microvinifications affected by downy mildew

AIM: Vine diseases are still responsible for economic losses. Previous study in our laboratory, have shown effects of oenological tannins against Botrytis cinerea1,2. According to this, the aim was to evaluate the wine protection by oenological tannins against an another disease, the downy mildew. METHODS: During the 2020 vintage, infected grapes by downy mildew (Vitis vinifera cv. Merlot) were collected from the dispositive ResIntBio. The 100 kg were crushed, destemmed and dispatch into 10 aluminium tanks. SO2 was added at 3 g/hL. Oenological tannins (grape, quebracho, ellagitannin or gallotannin) were added at 100 g/hL into eight different tanks (4×2 tanks). The two last tanks were considered as control without addition of oenological tannins. Alcoholic fermentation was achieved with Actiflore 33® at 20 g/hL. Malolactic fermentation was achieved with Lactoenos B7at 1 g/hL. Finished wines were sulfited to obtain 45 mg/L of total SO2.

Le Pinot noir dans la zone AOC des “Colli Orientali del Friuli” (nord-est de l’Italie) : influence de la forme de taille sur les paramètres viticoles et œnologiques du raisin et du vin

Pinot noir is an interesting vat variety for the high quality products it provides in the most suitable areas. In France, the most important Pinot Noir growing areas are Burgundy, Champagne, Alsace and the Loire. In Italy, Pinot Noir is grown almost exclusively in the northern regions of Trentino-Alto Adige, Lombardy and Friuli-Venezia Giulia.