IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Non-targeted analysis of C13-norisoprenoid aroma precursors in Riesling

Non-targeted analysis of C13-norisoprenoid aroma precursors in Riesling

Abstract

Significant wine aroma can be formed from non-volatile precursors that are linked to sugars, including but not limited to grape-derived monoterpene and C13-norisoprenoid glycosides. Most studies aiming to profile glycosidic flavour compounds in grapes and wine are performed by the analysis of hydrolytically liberated aglycones, either enzymatically or through acid hydrolysis, mainly due to a lack of analytical standards, diversity of glycosides, and their small concentrations. However, aglycone analysis alone can not reveal the full
complexity of precursors and the structural rearrangements of aglycones during and post-release, as it has been repeatedly reported for TDN and other related C13-norisporenoids that arise slowly during wine ageing.
The main objective of this study was to develop an analytical strategy to profile the potential presence of putative lead candidates and the presence of unknown precursors involved in the formation of the potent aroma compound, TDN, in Riesling wine. To uncover the structural complexity of TDN precursors, we firstly utilised a non-targeted metabolomics
approach (using HPLC with QTOF mass spectrometry) on Riesling grape grown under varied light conditions to determine potential candidates; putative TDN precursors ex wine were then further characterised by tandem mass spectrometry (HPLC-QqQ-MS/MS).
In addition to previously reported precursors, multiple glycosides were found in Riesling wine made from grapes grown under different light regimes which represent promising candidates likely to contribute to the formation of TDN. The results demonstrate that the combined HPLC-MS methods are effective for confirming and significantly expanding the
knowledge about the precursor pools involved in the formation of potential aroma compounds in wine. At the same time, this analytical strategy can help to develop a greater understanding of the environmental influences that can drive the formation of individual flavour precursors.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Grebneva Yevgeniya1, Herderich Markus¹, Rauhut Doris², Nicolotti Luca1 and Hixson Josh¹

¹The Australian Wine Research Institute
²Hochschule Geisenheim University

Contact the author

Keywords

Non-targeted analysis, aroma precursors, C13-norisoprenoids, glycosides, Riesling

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

The impact of ethyl esters, monoterpenes and volatile thiols to the perception of tropical fruit aromas in white wines

Many varietal white wines have aroma qualities that incorporate various tropical fruit aromas. These tropical fruit aromas are found to be considered positive qualities of the wines with consumers having positive emotional responses [1].

Le zonage viticole en Italie. État actuel et perspectives futures

Over the past few decades, viticultural research has made numerous contributions which have made it possible to better understand the behavior of the vine as well as its response to the conditions imposed on it by the environment and agronomic practices. However, these results have only rarely been used in the practical management of vineyards because the research has been carried out using partial experimental models where reality is only represented by a few factors which are sometimes even made more complex by the introduction of elements foreign to the existing situation and difficult to apply to production (varieties, methods of cultivation, management techniques, etc.). To these reasons, one could add a low popularization of the results obtained, as well as the difficulty of implementing the scientific contributions, which does not allow the different production systems to fully express their potential. This limit of viticultural research can only be exceeded by the design of integrated projects designed directly on and for the territory. Indeed, only the integrated evaluation of a viticultural agro-system, which can be achieved through zoning, makes it possible to measure, or even attribute to each element of the system, the weight it exerts on the quality of the wine.

The environmental impact of viticulture: analysis of the influence type of biofertilisers on wine quality and microbiology activity of soil

The trial was conducted in variety/rootstock Riesling/Kober 5 BB in the vineyard district of Vrsac. The vineyard was planted in 1996 on a south-facing slope, with rectangular type pruning of 3×1 m. The training system is of symmetric cordon type and mixed type pruning is practiced.

Generation of functional chitosan derivatives to better understanding the antiseptic effect on Brettanomyces bruxellensis in wine

The addition of fungal chitosan in wine is allowed since 2009 to release some spoilage microorganisms such as Brettanomyces bruxellensis (OIV/OENO 338A/2009; EC 53/2011). This yeast is able to produce volatil phenols and is responsible of organoleptic deviations compromising quality and typicality of red wines [1]. Despite the fact that fungal chitosan is highly renewable, no toxic and non-allergenic, its use remains marginal because this treatment is relatively recent (compare to sulphites treatment) and information are contradictory between different studies described in literature. For all these reasons,

The grapevine QTLome is ripe: QTL survey, databasing, and first applications

Overarching surveys of QTL (Quantitative Trait Loci) studies in both model plants and staple crops have facilitated the access to information and boosted the impact of existing data on plant improvement activities. Today, the grapevine community is ready to take up the challenge of making the wealth of QTL information F.A.I.R.. To ensure that all valuable published data can be used more effectively, the myriad of identified QTLs have to be captured, standardised and stored in a dedicated public database.
As an outcome of the GRAPEDIA initiative, QTL-dedicated experts from around the world have gathered to compile the grapevine QTLome: the complete information (e.g., map positions, associated phenotypes) describing all experimentally supported QTLs for a specific trait.