IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Non-targeted analysis of C13-norisoprenoid aroma precursors in Riesling

Non-targeted analysis of C13-norisoprenoid aroma precursors in Riesling

Abstract

Significant wine aroma can be formed from non-volatile precursors that are linked to sugars, including but not limited to grape-derived monoterpene and C13-norisoprenoid glycosides. Most studies aiming to profile glycosidic flavour compounds in grapes and wine are performed by the analysis of hydrolytically liberated aglycones, either enzymatically or through acid hydrolysis, mainly due to a lack of analytical standards, diversity of glycosides, and their small concentrations. However, aglycone analysis alone can not reveal the full
complexity of precursors and the structural rearrangements of aglycones during and post-release, as it has been repeatedly reported for TDN and other related C13-norisporenoids that arise slowly during wine ageing.
The main objective of this study was to develop an analytical strategy to profile the potential presence of putative lead candidates and the presence of unknown precursors involved in the formation of the potent aroma compound, TDN, in Riesling wine. To uncover the structural complexity of TDN precursors, we firstly utilised a non-targeted metabolomics
approach (using HPLC with QTOF mass spectrometry) on Riesling grape grown under varied light conditions to determine potential candidates; putative TDN precursors ex wine were then further characterised by tandem mass spectrometry (HPLC-QqQ-MS/MS).
In addition to previously reported precursors, multiple glycosides were found in Riesling wine made from grapes grown under different light regimes which represent promising candidates likely to contribute to the formation of TDN. The results demonstrate that the combined HPLC-MS methods are effective for confirming and significantly expanding the
knowledge about the precursor pools involved in the formation of potential aroma compounds in wine. At the same time, this analytical strategy can help to develop a greater understanding of the environmental influences that can drive the formation of individual flavour precursors.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Grebneva Yevgeniya1, Herderich Markus¹, Rauhut Doris², Nicolotti Luca1 and Hixson Josh¹

¹The Australian Wine Research Institute
²Hochschule Geisenheim University

Contact the author

Keywords

Non-targeted analysis, aroma precursors, C13-norisoprenoids, glycosides, Riesling

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

The effect of ecological conditions on the germination of pollen, fecundation and yield of some grapevine cultivars in Skopje region, Republic of Macedonia

The ecological conditions (climatic factors and soil) during the whole year, and especially before flowering and during the time of flowering, have a great influence on the functional ability of pollen, the pollination, the fecundation and the yielding potential of the cultivars of grapevine.

Effect of polysaccharide extracts from grape pomace on the oxidative evolution of hydroxycinnamic acids

Phenolic acids are especially sensitive to oxidation, so they can greatly impact wine sensory characteristics and stability [1]. Furthermore, extracts derived from grape pomace have been previously postulated as possible oenological adjuvants for wine protection [2].

Making sense of a sense of place: precision viticulture approaches to the analysis of terroir at different scales

Agriculture, natural resource management and the production and sale of products such as wine are increasingly data-driven activities. Thus, the use of remote and proximal crop and soil sensors to aid management decisions is becoming commonplace and ‘Agtech’ is proliferating commercially; mapping, underpinned by geographical information systems and complex methods of spatial analysis, is widely used…

The grapevine single-berry clock, practical tools and outcomes 

The dynamic sequence of physiological events along the three-months of berry development from anthesis to ripe stage has been thoroughly investigated. Most studies were performed on average samples, taking care to crush enough fruits to fairly represent the overall trend of the future harvest. However, phenological stages like 30% caps off (EL25) highlights the asynchronous nature of this population. Consequently, softening, onset of sugar accumulation and coloration were melted by asynchrony in a developmental mumbo jumbo, until their respective timing could be clarified by single berries approaches.

Appliance of climate projections for climate change study in Serbian vineyard regions

Climate projections considered here are for two periods in the future throughout two IPCC scenarios: 2001 – 2030 (A1B) and 2071 – 2100 (A2) obtained using Coupled Regional Climate