IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Untargeted metabolomics analyses to study taste-active compounds released during post-fermentation maceration of wine

Untargeted metabolomics analyses to study taste-active compounds released during post-fermentation maceration of wine


The sensory properties of a wine depends on its colours, aromas and flavors. Regarding red wines, the gustatory part consists of the acid, bitter and sweet tastes. Even if certain compounds were already identified as contributing to the sweetness, some taste modifications remain largely unexplained. For instance, empirical observations combined with sensory analyzes, have shown that an increase of wine sweetness occurs during post-fermentation maceration. This step is a key stage of red winemaking during which the juice is left in contact with the marc, that contains the solid parts of the grape (seeds, skins and sometimes stems). The present works aims at identifying some compounds responsible for this gain of sweetness. Recent developments have highlighted the interested of untargeted metabolomic analysis for oenology. Using similar tools, an original approach has been developed here to discover new taste-active molecule, The analyses were assayed using liquid chromatography–high resolution mass spectrometry (UHPLC-Q-Exactive Plus, Orbitrap analyzer). Data processing was carried out using the MzMine 2 software followed by a differential analysis and statistical study executed with the R software. To study the effect of post-fermentation maceration, different samples were taken from eight Bordeaux wineries over three vintages. These samples, coming from a total of 240 vats, were collected at two distinct stages, giving rise to two modalities: at the end of alcoholic fermentation and just before running-off the vat, that is after post-fermentation maceration. After LC-HRMS analysis and data processing, a list of ions showing a strong increase during maceration was obtained. The MS2 spectral data, obtained by fragmentation of molecules, provided information for their identification. Some of these ions were selected and considered for a targeted purification by various separative techniques (SPE, CPC and HPLC) which allowed their structural elucidation and sensory characterization in wine.This study proposes new tools to investigate taste-active compounds in wine. More generally, the results bring new insights to understand the chemical origin of wine taste.


Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article


Le Scanff Marie¹, Albertin Warren¹and Marchal Axel¹

¹UMR ŒNOLOGIE (OENO), ISVV, UMR 1366, Université de Bordeaux, INRAE, Bordeaux INP, Villenave d’Ornon, France

Contact the author


Untargeted metabolomics analysis, taste, sweetness, mass spectrometry


IVAS 2022 | IVES Conference Series


Related articles…

The vine and the hazelnut as elements of characterization of a terroir

The research examines how two characteristic cultivations of a territory like the vine and the hazelnut shape the identity of a unique terroir: Langhe (North West italy).

Ripening behaviour and grape must quality of eleven white resistant varieties in Trentino

In a situation of uncertainty towards the overall effect of climate change and the reduction of pestice utilization on quality, the wine sector needs to maintain the profitability of producers, which inexorably depends on ensuring the quality of grapes and wines. Among the various alternatives that can be adopted, hybrid varieties carrying resistance genes are currently gaining the attention of researchers and producers. Some of them are already a reality and are included in the national catalogue of some countries, selected by research institutes all over Europe.

NIR spectroscopy as a contacless rapid tool to estimate the amino acids profile in intact grape berries

Nitrogen composition of grape berries plays a key role in determining wine quality, affecting the development of alcoholic fermentation and the formation of volatile compounds. Grape nitrogen composition is influenced by several factors such as viticultural practices, soil management, timing or rate of fertilization and use of rootstock, among others.In this study a proximal, non-destructive tool based on NIR spectroscopy is presented to track the accumulation of a wide range of amino acids in intact grape berries during the ripening process.


Grape quality potential for wine production is strongly influenced by environmental parameters such as climate and agronomic factors such as rootstock. Several studies underline the effect of rootstock on vegetative growth of the scions [1] and on berry composition [2, 3] with an impact on wine quality. Rootstocks are promising agronomic tools for climate change adaptation and in most grape-growing regions the potential diversity of rootstocks is not fully used and only a few genotypes are planted. Little is known about the effect of rootstock genetic variability on the aromatic composition in wines; thus further investigations are needed.

Grapevine xylem embolism resistance spectrum reveals which varieties have a lower mortality risk in a future dry climate

Wine growing regions have recently faced intense and frequent droughts that have led to substantial economical losses, and the maintenance of grapevine productivity under warmer and drier climate will rely notably on planting drought-resistant cultivars. Given that plant growth and yield depend on water transport efficiency and maintenance of photosynthesis, thus on the preservation of the vascular system integrity during drought, a better understanding of drought-related hydraulic traits that have a significant impact on physiological processes is urgently needed. We have worked towards this end by assessing vulnerability to xylem embolism in 30 grapevine commercial varieties encompassing red and white Vitis vinifera varieties, hybrid varieties characterized by a polygenic resistance for powdery and downy mildew, and commonly used rootstocks. These analyses further allowed a global assessment of wine regions with respect to their varietal diversity and resulting vulnerability to stem embolism. Hybrid cultivars displayed the highest vulnerability to embolism, while rootstocks showed the greatest resistance. Significant variability also arose among Vitis vinifera varieties, with Ψ12 and Ψ50 values ranging from -0.4 to -2.7 MPa and from -1.8 to -3.4 MPa, respectively. Cabernet franc, Chardonnay and Ugni blanc featured among the most vulnerable varieties while Pinot noir, Merlot and Cabernet Sauvignon ranked among the most resistant. In consequence, wine regions bearing a significant proportion of vulnerable varieties, such as Poitou-Charentes, France and Marlborough, New Zealand, turned out to be at greater risk under drought. These results highlight that grapevine varieties may not respond equally to warmer and drier conditions, outlining the importance to consider hydraulic traits associated with plant drought tolerance into breeding programmes and modeling simulations of grapevine yield maintenance under severe drought. They finally represent a step forward to advise the wine industry about which varieties and regions would have the lowest risk of drought-induced mortality under climate change.