IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Combined high-resolution chromatography techniques and sensory analysis as a support decision system tool for the oenologist

Combined high-resolution chromatography techniques and sensory analysis as a support decision system tool for the oenologist

Abstract

One of the main challenges in the wine industry is to understand how different wine processing techniques and practices can influence the overall quality of the final product. Winemakers base the decision process mostly on their personal experience, which is often influenced by emotional aspects not always scientifically supported. Other issues come from the terroir and climate change, which are affecting the quality and production techniques, both in vineyards and wineries. In addition, it is important to consider that wine culture in the different production areas is also extremely variegated, even within the same country. Relying on analytical methods is a necessary step taken in many parts of the winemaking process, starting from the determination of the optimal time for the harvest. Monitoring the fermentation is usually performed by controlling the density or the residual sugars: secondary metabolites are usually not determined. This means that in some cases the fermentation can get stuck without really knowing the reason.

This research project aims to create a predictive multivariate statistical tool in order to support the winemaker during the workflow in the winery. So, the oenologist can obtain the desired style of wine by extracting information from correlating basic oenological parameters with high resolution and sensory analysis.

Pinot Noir cultivar is a very important variety for South Tyrol representing 9.1% of the local vineyard (source: vinialtoadige.com). The experimental scheme shown in figure 1 was developed in collaboration with a South Tyrolean winery. The study plan was aimed at ensuring control over the winemaking protocols while still working at the winery production scale (90 hL per experiment).

The experimental plan included four vineyards. Besides, for one of these vineyards, the plan included the study of a viticultural technique (treatment of the canopy with chitosan prior to harvest), and two different oenological treatments: pre fermentative 4-days cryo-maceration and 7-days grape freezing. The samples were analyzed by HS-SPME-GCxGC-ToF/MS for volatile compounds, HPLC-DAD-FLD for phenolic compounds with off-line HPLC-MS/MS to identify the components, and sensory analysis by quantitative descriptive analysis (QDA®) (Poggesi, et al., 2021). The study was repeated in two different vintages (2019 and 2020) with three replicates.

As a result, multivariate statistic models showed good separations between vineyards, frozen grapes, and the cryo-macerated treatment, and separation between chitosan treatment and the control treatment. Furthermore, the time evolution of the main chemical markers was evaluated. Finally, the results obtained on the 2019 vintage were supported by the 2020 ones

References

Alto Adige Wine – Exquisite Wines from Northern Italy (altoadigewines.com)
Poggesi, S., de Matos, A. D., Longo, E., Chiotti, D., Pedri, U., Eisenstecken, D., Robatscher, P., & Boselli, E. (2021). Chemosensory profile of South Tyrolean pinot blanc wines: A multivariate regression approach. Molecules, 26(20), 1–18. https://doi.org/10.3390/molecules26206245

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Poggesi Simone¹, Darnal¹, Merkyte¹, Longo¹, Montali²and Boselli ¹

¹Faculty of Science and Technology, Free University of Bozen-Bolzano
²Faculty of Computer Science, Free University of Bozen-Bolzano

Contact the author

Keywords

Pinot Noir, bidimensional gas chromatography, non-volatile phenols, support decision tool, sensory analysis

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Landscape qualities and keys for action

Parallèlement à la connaissance des aptitudes viticoles, le terroir témoigne d’une identité locale, d’une spécificité des conditions de productions et d’une originalité des lieux.

Impact of strain and inoculation time on yeasts interactions: mass spectrometry-based study.

Under oenological conditions, when yeasts grow simultaneously during alcoholic fermentation, they often do not coexist passively, and in most cases, physiological and metabolic interactions are established between them. They interact by producing unpredictable compounds and fermentation products that can affect the chemical composition of the wine and therefore alter its aromatic and sensory

LC-MS based metabolomics and target analysis to study the chemical evolution of wines stored under different redox conditions

Oxygen is a key player in oenology, since its effects can be a blessing, benefiting wine quality, or a curse causing irreversible damage.

A.O.C. taureau de Camargue

A.O.C. réservée aux viandes fraîches de bovins mâles ou femelles, nés, élevés et abattus dans une aire géographique définie (voir carte)

Influence of agronomic practices in soil water content in mid-mountain vineyards

In the context of LIFE project MIDMACC (LIFE18 CCA/ES/001099), several pilots have been installed in vineyards in mid mountain areas of Catalonia (NE Spain) to test well stablished agronomic practices to increase the adaptation of Mediterranean mid mountain to climate change. Soil water content (SWC) at three different depths (15, 30 and 45cm) was measured in continuum from August 2020. One pilot (WC) included a well-established green cover (GC), a new GC (NC) and a conventional soil management (CM, tilling+herbicides). NC presented an intermediate state between WC and CM, responding similarly to CM in autumn but quickly reaching similar SWC to WC, then following the same evolution till next spring, with CM presenting lower values along autumn and winter. Then vegetation activation decreased SWC in all plots, (much slower in CM, lacking GC). Sensibility to spring rains is again intermediate for NC, which joins SWC evolution of CM by the end of spring till next autumn. It is expected that NC will resemble WC more and more as its GC develops. In the pilot combining vine training (VSP vs Gobelet) and hillside management (slope vs terrace), no clear pattern could be related with these conditions. However, both terraces seem to be more sensitive to spring rains. A third pilot included new vineyards (7 and 1 year old). In the new vineyard (N), higher canopy development, a spontaneous green cover and row straw resulted in a slower SWC dynamic, not so sensitive to rains but conserving more soil water in spring and most of summer, even with presumably a higher water extraction by vines. In the newest vineyard (VN) the deepest sensor is still sensitive to rain events all over the year and SWC is always highest at this depth, revealing small water capture by vines.