IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Combined high-resolution chromatography techniques and sensory analysis as a support decision system tool for the oenologist

Combined high-resolution chromatography techniques and sensory analysis as a support decision system tool for the oenologist

Abstract

One of the main challenges in the wine industry is to understand how different wine processing techniques and practices can influence the overall quality of the final product. Winemakers base the decision process mostly on their personal experience, which is often influenced by emotional aspects not always scientifically supported. Other issues come from the terroir and climate change, which are affecting the quality and production techniques, both in vineyards and wineries. In addition, it is important to consider that wine culture in the different production areas is also extremely variegated, even within the same country. Relying on analytical methods is a necessary step taken in many parts of the winemaking process, starting from the determination of the optimal time for the harvest. Monitoring the fermentation is usually performed by controlling the density or the residual sugars: secondary metabolites are usually not determined. This means that in some cases the fermentation can get stuck without really knowing the reason.

This research project aims to create a predictive multivariate statistical tool in order to support the winemaker during the workflow in the winery. So, the oenologist can obtain the desired style of wine by extracting information from correlating basic oenological parameters with high resolution and sensory analysis.

Pinot Noir cultivar is a very important variety for South Tyrol representing 9.1% of the local vineyard (source: vinialtoadige.com). The experimental scheme shown in figure 1 was developed in collaboration with a South Tyrolean winery. The study plan was aimed at ensuring control over the winemaking protocols while still working at the winery production scale (90 hL per experiment).

The experimental plan included four vineyards. Besides, for one of these vineyards, the plan included the study of a viticultural technique (treatment of the canopy with chitosan prior to harvest), and two different oenological treatments: pre fermentative 4-days cryo-maceration and 7-days grape freezing. The samples were analyzed by HS-SPME-GCxGC-ToF/MS for volatile compounds, HPLC-DAD-FLD for phenolic compounds with off-line HPLC-MS/MS to identify the components, and sensory analysis by quantitative descriptive analysis (QDA®) (Poggesi, et al., 2021). The study was repeated in two different vintages (2019 and 2020) with three replicates.

As a result, multivariate statistic models showed good separations between vineyards, frozen grapes, and the cryo-macerated treatment, and separation between chitosan treatment and the control treatment. Furthermore, the time evolution of the main chemical markers was evaluated. Finally, the results obtained on the 2019 vintage were supported by the 2020 ones

References

Alto Adige Wine – Exquisite Wines from Northern Italy (altoadigewines.com)
Poggesi, S., de Matos, A. D., Longo, E., Chiotti, D., Pedri, U., Eisenstecken, D., Robatscher, P., & Boselli, E. (2021). Chemosensory profile of South Tyrolean pinot blanc wines: A multivariate regression approach. Molecules, 26(20), 1–18. https://doi.org/10.3390/molecules26206245

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Poggesi Simone¹, Darnal¹, Merkyte¹, Longo¹, Montali²and Boselli ¹

¹Faculty of Science and Technology, Free University of Bozen-Bolzano
²Faculty of Computer Science, Free University of Bozen-Bolzano

Contact the author

Keywords

Pinot Noir, bidimensional gas chromatography, non-volatile phenols, support decision tool, sensory analysis

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

EFFECT OF FUMARIC ACID ON SPONTANEOUS FERMENTATION IN GRAPE MUST

Malolactic fermentation (MLF)¹, the decarboxylation of L-malic acid into L-lactic acid, is performed by lactic acid bacteria (LAB). MLF has a deacidifying effect that may compromise freshness or microbiological stability in wines² and can be inhibited by fumaric acid [E297] (FA). In wine, can be added at a maximum allowable dose of 0.6 g/L³. Its inhibition with FA is being studied as an alternative strategy to minimize added doses of SO₂⁴. In addition, wine yeasts are capable of metabolizing and storing small amounts of FA and during alcoholic fermentation (AF).

Berry carbon (δ13C) and nitrogen (δ15N) isotopic ratio reflects within farm terroir diffferences

ÂThe natural abundance of carbon stable isotopes has been reported to be related to water availability in grapevines quite widely. In the case of nitrogen, the natural abundance of its stable isotopes is mainly affected by the nature of the source of nitrogen (organic vs. inorganic) used by the plant, though the bibliography available for grapevine is very scarce.

Effects of long-term drought stress on soil microbial communities from a Syrah cultivar vineyard

Changes in the rainfall and temperature patterns affect the increase of drought periods becoming one of the major constraints to assure agricultural and crop resilience in the Mediterranean regions. Beside the adaptation of agricultural practices, also the microbial compartment associated to plants should be considered in the crop management. It is known that the microbial community change according to several factors such as soil composition, agricultural management system, plant variety and rootstock.

The impact of vine nitrogen status on aroma potential expression in Vitis vinifera L. cv. Sauvignon blanc

In interaction with climate and genetic or human factors, the soil is a major component of the viticulture terroir. The mineral composition of the soil influences vine performance and wine sensory attributes. Among the elements that vines take from the soil, nitrogen is the one that has the strongest impact on vine physiology, vigor and grape composition. In addition to its major effect on primary metabolites in berries, nitrogen plays also a decisive role in the secondary metabolism, especially in the production of key compounds for berries quality, like volatile thiols, methoxypyrazines and glutathione (GSH).

A NEW SPECIFIC LINEAGE OF OENOCOCCUS OENI IN COGNAC APPELLATION WINES

Oenococcus oeni is the main lactic acid bacteria (LAB) species which conducts the malolactic fermentation (MLF) in wine. During MLF, O. oeni converts malic acid into lactic acid, which modulates wine aroma composition leading to better balanced organoleptic properties. O. oeni is a highly specialized species only detected in environments containing alcohol such as wine, cider or kombucha. Genome analysis of more than 240 strains showed that they form at least 4 main phylogenetic lineages and several sublineages, which are associated with different beverages or types of wines.