IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Combined high-resolution chromatography techniques and sensory analysis as a support decision system tool for the oenologist

Combined high-resolution chromatography techniques and sensory analysis as a support decision system tool for the oenologist

Abstract

One of the main challenges in the wine industry is to understand how different wine processing techniques and practices can influence the overall quality of the final product. Winemakers base the decision process mostly on their personal experience, which is often influenced by emotional aspects not always scientifically supported. Other issues come from the terroir and climate change, which are affecting the quality and production techniques, both in vineyards and wineries. In addition, it is important to consider that wine culture in the different production areas is also extremely variegated, even within the same country. Relying on analytical methods is a necessary step taken in many parts of the winemaking process, starting from the determination of the optimal time for the harvest. Monitoring the fermentation is usually performed by controlling the density or the residual sugars: secondary metabolites are usually not determined. This means that in some cases the fermentation can get stuck without really knowing the reason.

This research project aims to create a predictive multivariate statistical tool in order to support the winemaker during the workflow in the winery. So, the oenologist can obtain the desired style of wine by extracting information from correlating basic oenological parameters with high resolution and sensory analysis.

Pinot Noir cultivar is a very important variety for South Tyrol representing 9.1% of the local vineyard (source: vinialtoadige.com). The experimental scheme shown in figure 1 was developed in collaboration with a South Tyrolean winery. The study plan was aimed at ensuring control over the winemaking protocols while still working at the winery production scale (90 hL per experiment).

The experimental plan included four vineyards. Besides, for one of these vineyards, the plan included the study of a viticultural technique (treatment of the canopy with chitosan prior to harvest), and two different oenological treatments: pre fermentative 4-days cryo-maceration and 7-days grape freezing. The samples were analyzed by HS-SPME-GCxGC-ToF/MS for volatile compounds, HPLC-DAD-FLD for phenolic compounds with off-line HPLC-MS/MS to identify the components, and sensory analysis by quantitative descriptive analysis (QDA®) (Poggesi, et al., 2021). The study was repeated in two different vintages (2019 and 2020) with three replicates.

As a result, multivariate statistic models showed good separations between vineyards, frozen grapes, and the cryo-macerated treatment, and separation between chitosan treatment and the control treatment. Furthermore, the time evolution of the main chemical markers was evaluated. Finally, the results obtained on the 2019 vintage were supported by the 2020 ones

References

Alto Adige Wine – Exquisite Wines from Northern Italy (altoadigewines.com)
Poggesi, S., de Matos, A. D., Longo, E., Chiotti, D., Pedri, U., Eisenstecken, D., Robatscher, P., & Boselli, E. (2021). Chemosensory profile of South Tyrolean pinot blanc wines: A multivariate regression approach. Molecules, 26(20), 1–18. https://doi.org/10.3390/molecules26206245

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Poggesi Simone¹, Darnal¹, Merkyte¹, Longo¹, Montali²and Boselli ¹

¹Faculty of Science and Technology, Free University of Bozen-Bolzano
²Faculty of Computer Science, Free University of Bozen-Bolzano

Contact the author

Keywords

Pinot Noir, bidimensional gas chromatography, non-volatile phenols, support decision tool, sensory analysis

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Closing the carbon loop: evaluating the potential of grapevine-derived biochar as a soil conditioner in warm climate vineyards

Significant increases in anthropogenic carbon dioxide (CO2) emissions due to combustion of fossil fuels and intensive land management practices that release CO2 into the atmosphere have resulted in higher air temperatures due to the greenhouse effect.

Combined use of leaf removal and natural shading to delay grape ripening in Manto negro (Vitis vinifera L.) under deficit irrigation 

The increasingly frequent heat waves during grape ripening pose challenges for premium wine grape production. This makes the development of irrigation and canopy management techniques of great importance to maximize yield and grape quality. A field experiment was carried out during 2021 and 2022 using Manto negro wine grapes to study the effect of two irrigation strategies and different light exposure levels on grape quality.

Metabolomic insights into wine’s sensory identity: unveiling climate-driven changes in aroma composition

Wine, a sensitive and intricate agricultural product, is being affected by climate change, which accelerates grapevine phenological stages and alters grape composition and ripening. This influences the synthesis of key aroma compounds, shaping wine’s sensory attributes [1]. The complex aroma profile, resulting from compound interactions, presents a metabolomics challenge to identify these indicators and their environmental change responses, which is being addressed using diverse analytical techniques.

Nivel de infección y saneamiento del virus del entrenudo corto (GFLV) en el cv. de vid Pedro Ximenez en la denominación de origen Montilla-Moriles (DOMM)

Mediante análisis por test ELISA de hojas de vides (Vitis vinifera L.) del cv. Pedro Ximénez, procedentes de 28 parcelas experimentales distribuidas por la DOMM

Synthesis of the contribution of the Giesco (group of international experts of vitivinicultural systems for cooperation) to the study of terroirs

Since 1998, the GiESCO (previously named GESCO: Groupe d’Etude des Systèmes de COnduite de la vigne) has provided the scientific community with relevant contributions to the study of terroirs. Here is a synthesis of the main terroir-related fields and the major ideas the GiESCO has developed: Basic Terroir Unit and climate, Vine Ecophysiology and microclimate – moderate drought, Vineyard heterogeneity and new technologies, Viticultural Terroir Unit and canopy management, Terroir – Territory and man.