IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Combined high-resolution chromatography techniques and sensory analysis as a support decision system tool for the oenologist

Combined high-resolution chromatography techniques and sensory analysis as a support decision system tool for the oenologist

Abstract

One of the main challenges in the wine industry is to understand how different wine processing techniques and practices can influence the overall quality of the final product. Winemakers base the decision process mostly on their personal experience, which is often influenced by emotional aspects not always scientifically supported. Other issues come from the terroir and climate change, which are affecting the quality and production techniques, both in vineyards and wineries. In addition, it is important to consider that wine culture in the different production areas is also extremely variegated, even within the same country. Relying on analytical methods is a necessary step taken in many parts of the winemaking process, starting from the determination of the optimal time for the harvest. Monitoring the fermentation is usually performed by controlling the density or the residual sugars: secondary metabolites are usually not determined. This means that in some cases the fermentation can get stuck without really knowing the reason.

This research project aims to create a predictive multivariate statistical tool in order to support the winemaker during the workflow in the winery. So, the oenologist can obtain the desired style of wine by extracting information from correlating basic oenological parameters with high resolution and sensory analysis.

Pinot Noir cultivar is a very important variety for South Tyrol representing 9.1% of the local vineyard (source: vinialtoadige.com). The experimental scheme shown in figure 1 was developed in collaboration with a South Tyrolean winery. The study plan was aimed at ensuring control over the winemaking protocols while still working at the winery production scale (90 hL per experiment).

The experimental plan included four vineyards. Besides, for one of these vineyards, the plan included the study of a viticultural technique (treatment of the canopy with chitosan prior to harvest), and two different oenological treatments: pre fermentative 4-days cryo-maceration and 7-days grape freezing. The samples were analyzed by HS-SPME-GCxGC-ToF/MS for volatile compounds, HPLC-DAD-FLD for phenolic compounds with off-line HPLC-MS/MS to identify the components, and sensory analysis by quantitative descriptive analysis (QDA®) (Poggesi, et al., 2021). The study was repeated in two different vintages (2019 and 2020) with three replicates.

As a result, multivariate statistic models showed good separations between vineyards, frozen grapes, and the cryo-macerated treatment, and separation between chitosan treatment and the control treatment. Furthermore, the time evolution of the main chemical markers was evaluated. Finally, the results obtained on the 2019 vintage were supported by the 2020 ones

References

Alto Adige Wine – Exquisite Wines from Northern Italy (altoadigewines.com)
Poggesi, S., de Matos, A. D., Longo, E., Chiotti, D., Pedri, U., Eisenstecken, D., Robatscher, P., & Boselli, E. (2021). Chemosensory profile of South Tyrolean pinot blanc wines: A multivariate regression approach. Molecules, 26(20), 1–18. https://doi.org/10.3390/molecules26206245

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Poggesi Simone¹, Darnal¹, Merkyte¹, Longo¹, Montali²and Boselli ¹

¹Faculty of Science and Technology, Free University of Bozen-Bolzano
²Faculty of Computer Science, Free University of Bozen-Bolzano

Contact the author

Keywords

Pinot Noir, bidimensional gas chromatography, non-volatile phenols, support decision tool, sensory analysis

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Contribution of Piperitone to the mint nuances perceived in the aging bouquet of red Bordeaux wines

During the tasting of a fine, old wine, the aromas generated in the glass are intertwined in an intimate, complex manner, expressing the fragrance of the aging bouquet. This aging bouquet, which develops during bottle storage through a complex transformation process, may result in a broad palette of nuances. Among these, undergrowth, truffle, toasted, spicy, licorice, fresh red- and black-berry fruit and mint descriptors were recently identified as features of its olfactory representation for red Bordeaux wines. Although a targeted chemical approach focusing on volatile sulfur compounds revealed the role played by dimethyl sulfide, 2-furanmethanethiol, and 3-sulfanylhexanol as molecular markers of the typicality of the wine aging bouquet of red Bordeaux wines, its chemical transcription has only partially been elucidated.

Exploring the inner secrets of grapevine: a journey through plant-microbe interactions

Throughout centuries of anthropocentric breeding, plants have been selectively bred to enhance their quality traits and yield, often overlooking the importance of neglected attributes, like those involved in the interactions with beneficial microorganisms. This phenomenon led to an alteration in the distribution of photosynthetic products, shifting from defence mechanisms to growth, commonly described as ‘domestication syndrome’. Addressing the losses stemming from this condition is imperative just as unravelling the concealed communication between grapevines and beneficial microorganisms.

Long-Term impact of elevated CO2 exposure on grapevine physiology (Vitis vinifera L. cvs. Riesling & Cabernet Sauvignon)

Over the next 25 years, the Intergovernmental Panel on Climate Change (IPCC 2013) predicts a ~20% increase in atmospheric carbon dioxide (CO2) concentration compared to the current level. Concurrently, temperatures are steadily rising. Grapevines, known for their climate sensitivity, will show changes in phenology, physiological processes and grape compositions in response. Investigating eco-physiological processes provides insights into the response of field-grown grapevines to elevated CO2 conditions. A Free Air Carbon Dioxide Enrichment (FACE) facility was established in the Rheingau region of Germany. Two grapevine varieties (Vitis vinifera L., cvs. Riesling and Cabernet Sauvignon) were planted, with the VineyardFACE comprising three rings with ambient atmospheric CO2 (approx. 400 – 420 ppm from 2014 to 2023, aCO2) and three rings with elevated CO2 concentration (+20% to ambient; eCO2).

Shoot heterogeneity effects in a Shiraz/R99 vineyard

Nous avons fait des recherches sur l’effet de l’hétérogénéité des bourgeons sur les paramètres de la croissance végétative et reproductive, la physiologie de la vigne et la composition du raisin dans une parcelle de Shiraz/Richter 99. Des bourgeons sous-développés (typiquement plus courts et moins mûrs à la véraison) ont été comparés avec

Mapping natural terroir units using a multivariate approach and legacy data

This work aimed at setting up a multivariate and geostatistical methodology to map natural terroir units of the viticultural areas at the province scale (1:125,000).