IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Antifungal and Laccase-Suppressing Activity of Phenolic Compounds and Their Oxidation Products on Grey Mold-Fungus Botrytis cinerea

Antifungal and Laccase-Suppressing Activity of Phenolic Compounds and Their Oxidation Products on Grey Mold-Fungus Botrytis cinerea

Abstract

Botrytis cinerea causes grey mold that results in severe problems for wine makers worldwide. Infected grapes lead to quality deterioration including formation of off-flavors or browning. The latter is caused by the enzyme laccase which is capable of oxidizing a wide range of phenolic compounds. Since the use of conventional pesticides is associated with many concerns of consumers and authorities regarding environmental and health related issues and may result in fungicide resistance, the development of green alternatives is gaining more attention. Phenolic compounds like ferulic acid or stilbens which serve as phytoalexins have shown promising results in terms of growth-inhibitory effects against B. cinerea. The present study focuses on further investigations of the antifungal and laccase-suppressing effects of these phenols and especially their laccase-derived oxidation products using the syringaldazine-assay for determination of the laccase activity. The results revealed that they can be considered as a sustainable alternative to synthetic fungicides for Botrytis cinerea management.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Umberath Kim Marie1, Schieber Andreas1 and Weber Fabian1

1University of Bonn, Institute of Nutritional and Food Sciences, Molecular Food Technology

Contact the author

Keywords

Botrytis cinerea, laccase, phenolic compounds, oxidation products, antifungal activity

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Effects of progeny in the modulation of the response to water stress in isohydric and anisohydric varieties

Each grapevine variety has a specific water use regulation response under drought, and it is still unclear whether this regulation results from innate genotypic behavior (iso- and anisohydric), or is a response to environmental factors, namely recurrent water stress priming effects. In the present work, we explored the influence of the field-grown genotypes’ drought memory in the drought-response phenotype of their vegetative progenies, in Trincadeira (isohydric) and Castelão (anisohydric) varieties under a drought event followed by recovery in a glasshouse. Cuttings from both cultivars subjected to full irrigation (FI) and non-irrigation (NI) treatments for 5 consecutive years were used.

Variety “Rebula” (Vitis vinifera L.) determines the terroir Goriška brda “Collio” in Slovenia

A «terroir» is a group of vineyards from the same region, belonging to a specific appellation, and sharing the same type of soil, weather conditions, grapes and wine making savoir-faire, which contribute its specific personality to the wine. White wine variety «Rebula» or «Ribolla gialla» is a local and traditional variety, which is mentioned already in XIII. century like variety for tax paying and merchandise.

Caracterización sensorial y preferencias de los consumidores en vinos de crianza biológica elaborados a diferente graduación alcohólica

Las tendencias actuales del mercado apuntan hacia el consumo de vinos con menor contenido en alcohol, y, por otra parte, de vinos con características especiales y diferenciadoras, siendo los vinos con indicación geográfica o denominación de origen los más demandados.

Antimicrobial activity of oenological polyphenols against Gram positive and Gram negative intestinal multidrug-resistant bacteria

Bacterial antibiotic resistance is a major current health problem. Polyphenols have demonstrated antibacterial activity, and in this work we studied the effect of oenological polyphenols on the growth of intestinal multidrug-resistant strains of human and animal origin. Two Enterococcus faecium strains, resistant to vancomycin and other antibiotics, and four Escherichia coli strains, resistant to ampicillin and other antibiotics, were included in this study. All strains showed multidrug resistant phenotypes and genotypes to at least two antibiotic families.

Multi-omics methods to unravel microbial diversity in fermentation of Riesling wines

Wine aroma is shaped by the wine’s chemical compositions, in which both grape constituents and microbes play crucial roles. Although wine quality is influenced by the microbial communities, less is known about their population interactions.