IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Hyperspectral imaging and Raman spectroscopy, nondestructive methods to assess wine grape composition

Hyperspectral imaging and Raman spectroscopy, nondestructive methods to assess wine grape composition

Abstract

Grape composition is of high interest for producing quality wines. For that, grape analyses are necessary, and they still require sample preparation, whether with classical analyses or with NIR analyses. The aim of the study was to test the ability of two nondestructive analyses, directly on grapes, hyperspectral imaging (HSI) and Raman spectroscopy to assess their composition.
For that, 7 grape varieties were analyzed for 2 vintages. Each grape was characterized by its technological ripening (levels of sugars, organic acids and pH) and its phenolic ripeness (total phenolic, total flavonoids, total anthocyanins contents, as well as extractable phenolic, extractable flavonoids, extractable anthocyanins, values obtained from a model wine maceration from skins, and color intensity). Spectra were recorded on 100 and 40 fresh berries per date and variety respectively with hyperspectral imaging and Raman. Raw data underwent different pretreatments (SNV, 1st and 2nd derivative) and PLS-R were then realized in order to provide models to assess grape composition.
The results showed that the 1st derivative data pretreatment generated better models and was then kept for all following analyses. Both methods, Raman spectroscopy and hyperspectral imaging, showed good ability to assess technological ripening parameters (sugar and acid contents) as well as phenolic content (TPI, Total Phenolics, Total Anthocyanins, Total Flavonoids and their extractable equivalents) (with globally R² > 0.81). However, it was not possible to reach the color intensity of grapes.
Even if both methods have the potential to assess wine grape quality on 11 important parameters, the quality of the models generated in our study was dependent on the quality parameter, the type of grapes (color) and the method, except for fructose, TSS and Extractable Anthocyanin contents, which were equivalent. Thus, the glucose concentration and the Total Phenolic Index (TPI) were better assessed by Raman spectroscopy, whereas Extractable Phenolics content was better estimated by HSI for both white and red grapes as well as Total  Anthocyanin content. Tartaric acid, Total Flavonoids, Color Intensity and extractable Flavonoids were better assessed by HSI for red grapes but by Raman for white grapes.
The quality of the generated models was yet dependent on the color of grapes and the parameter considered. More data would be necessary to strengthen the models but the proof of concept was successful with this study

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Maury Chantal¹, Gabrielli Mario², Ounaissi Daoud¹, Lançon-Verdier Vanessa¹, Julien Séverine¹and Le Meurlay Dominique ¹

¹USC 1422 GRAPPE, INRAE, Ecole Supérieure d’Agricultures, SFR 4207 QUASAV
²Dipartimento di Scienze e Tecnologie Alimentari per una filiera agro-alimentare Sostenibile, Università Cattolica del Sacro Cuore

Contact the author

Keywords

wine grape, hyperspectral imaging, Raman spectroscopy, phenolics, composition

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Impact of temperature and solar radiation on grape composition variability in the Saint-Emilion winegrowing area 

Grape composition is strongly influenced by climate conditions. Their expected modifications in near future, notably because of increased temperatures, could significantly modify the biochemical composition of berries at harvest, and thus wine typicity and quality. Elevated temperatures favor sugar accumulation in grapes, enhance malic acid degradation and modify the amino acid content. They also reduce significantly anthocyanin accumulation in Merlot, leading to the imbalance between anthocyanins and sugars, while no significant effects on final anthocyanin levels were reported in Tempranillo[1] and finally affect aromas or aroma precursors.

Prefermentative CO2 saturation of grape must to obtaining white wines with low SO2 content

The objective this work has been study the possibility of partially or completely replacing sulphur in the winemaking of white wines through the use of the prefermentative saturation of musts with CO2.

Contribution of soil for tipifiyng wines in four geographical indications at Serra Gaúcha, Brazil

Brazil has a recent history on geographical indications and product regulation for high quality wines. The first geographic indication implemented was the Vale dos Vinhedos Indication of Procedence (

Comparison between the volatile chemical profile of two different blends for the enhancement of  “Valpolicella Superiore”

Valpolicella is a famous wine producing region in the province of Verona owing its fame above all to the production of two Protected Designation of Origins (PDOs) withered wines: Amarone and Recioto. In recent years, however, the wineries have been interested in the enhancement and qualitative increase of another PDO, Valpolicella Superiore. All the Valpolicella PDOs wines are produced with a unique grape blend, mainly Corvina, Corvinone, Rondinella and a range of other minor varieties.

Pure wine vs natural wine

S’il n’existe pas de réglementation officielle, la démarche des vins naturels prône un retour aux pratiques dites ancestrales préconisant notamment un mode d’élaboration des vins utilisant le moins d’intrants possible. Le seul autorisé reste l’anhydride sulfureux (SO2) à des doses quatre à cinq fois moins importantes que pour les vins dits conventionnels. Ce désir de renouer avec