IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Application of a low-cost device VIS-NIRs-based for polyphenol monitoring during the vinification process

Application of a low-cost device VIS-NIRs-based for polyphenol monitoring during the vinification process

Abstract

In red wine production, phenolic maturity is becoming increasingly important. Anthocyanins, flavonoids and total polyphenols content and availability significantly influence the harvest time of wine grapes while, during vinification process, their extraction strongly affects wine body, color and texture. The polyphenol presence in musts and wines, over that by the grape berry accumulation and the cellular maturity, is significantly influenced by maceration and fermentation techniques. To date, polyphenol evaluation is performed using destructive, laborious, expensive and often environmental unfriendly methods of analysis. Nowadays, companies that want to be competitive in a global market must necessarily undergo to a process of innovation and digital transformation. In this context, the GO-SmartData project (smart management of vineyard and cellar) aims to identify a rapid, economical, easy-to-use and non-destructive technologies for monitoring fermenting musts and wines. Here, the application of a low-cost mini-sensor based on Visible and Near Infrared (VIS-NIR) spectroscopy designed to operate into 19 selected spectral bands between 410 and 1720 nm is proposed. The prototype is designed to collect, directly from the wine tanks, data to be send to an in-cloud system (IoT) and computed into numerical values, according to predictive statistical modelling. The spectra detection through the VIS-NIR prototype has been performed on fermenting musts and aging wines concomitantly with analytical measurement of polyphenols. Predicting models were built using multivariate regressive approaches (PLS) which were then tested for accuracy and robustness in terms of correlation (R2), as well as potential errors (RMSEC, RMSEP). The VIS-NIR prototype shows quite promising performances and aptitudes for becoming an easy-to-use device destined to the on-line employment in the vinery environment

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Modesti Margherita¹, Alfieri Gianmarco¹, Pardini Luca², Cerreta Raffaele¹, Mencarelli Fabio²and Bellincontro Andrea¹

¹Department for innovation in biological, agro-food and forest system Tuscia University
²Department of Agriculture Food and Environment (DAFE), University of Pisa

Contact the author

Keywords

Non-destructive analyses, spectrophotometry, polyphenols, NIR, phenolics

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

What is the best soil for Sangiovese quality wine?

Sangiovese is one of the main cultivar in the Italian ampelographic outline and it occupies more than 60% of total vineyard surface in the Tuscany region. It is also well known that the environmental

Bioclimatic shifts and land use options for Viticulture in Portugal

Land use, plays a relevant role in the climatic system. It endows means for agriculture practices thus contributing to the food supply. Since climate and land are closely intertwined through multiple interface processes, climate change may lead to significant impacts in land use. In this study, 1-km observational gridded datasets are used to assess changes in the Köppen–Geiger and Worldwide Bioclimatic (WBCS)

Biological de-sugaring of grape musts to adjust the alcoholic strength of wine

Climate change is having an ever-increasing impact on the physico-chemical composition of grapes, with ever-lower acidity and higher sugar levels.

Replay of the Wine Vision 2040 event

A webinar organised by the UBC Wine Research Centre, on June 25th 2020. About Wine Vision 2040 Wine Vision 2040 is delivered by wine-passionate, high-profile individuals keen to share ideas and views that will spark conversations within wine communities.  No...

A DNA-free editing approach to help viticulture sustainability: dual editing of DMR6-1 and DMR6-2 enhances resistance to downy mildew 

The sustainability of viticulture hinges on maintaining quality and yield while reducing pesticide use. Promising strides in this direction involve the development of clones with enhanced disease tolerance, particularly through the knockout of plant susceptibility genes. Knocking out of Downy Mildew Resistant 6 (DMR6) led to increased levels of endogenous salicylic acid (SA), a regulator of immunity, resulting in enhanced tolerance to Downy Mildew (DM) and other diseases in various crops.