IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Application of a low-cost device VIS-NIRs-based for polyphenol monitoring during the vinification process

Application of a low-cost device VIS-NIRs-based for polyphenol monitoring during the vinification process

Abstract

In red wine production, phenolic maturity is becoming increasingly important. Anthocyanins, flavonoids and total polyphenols content and availability significantly influence the harvest time of wine grapes while, during vinification process, their extraction strongly affects wine body, color and texture. The polyphenol presence in musts and wines, over that by the grape berry accumulation and the cellular maturity, is significantly influenced by maceration and fermentation techniques. To date, polyphenol evaluation is performed using destructive, laborious, expensive and often environmental unfriendly methods of analysis. Nowadays, companies that want to be competitive in a global market must necessarily undergo to a process of innovation and digital transformation. In this context, the GO-SmartData project (smart management of vineyard and cellar) aims to identify a rapid, economical, easy-to-use and non-destructive technologies for monitoring fermenting musts and wines. Here, the application of a low-cost mini-sensor based on Visible and Near Infrared (VIS-NIR) spectroscopy designed to operate into 19 selected spectral bands between 410 and 1720 nm is proposed. The prototype is designed to collect, directly from the wine tanks, data to be send to an in-cloud system (IoT) and computed into numerical values, according to predictive statistical modelling. The spectra detection through the VIS-NIR prototype has been performed on fermenting musts and aging wines concomitantly with analytical measurement of polyphenols. Predicting models were built using multivariate regressive approaches (PLS) which were then tested for accuracy and robustness in terms of correlation (R2), as well as potential errors (RMSEC, RMSEP). The VIS-NIR prototype shows quite promising performances and aptitudes for becoming an easy-to-use device destined to the on-line employment in the vinery environment

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Modesti Margherita¹, Alfieri Gianmarco¹, Pardini Luca², Cerreta Raffaele¹, Mencarelli Fabio²and Bellincontro Andrea¹

¹Department for innovation in biological, agro-food and forest system Tuscia University
²Department of Agriculture Food and Environment (DAFE), University of Pisa

Contact the author

Keywords

Non-destructive analyses, spectrophotometry, polyphenols, NIR, phenolics

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Novel ATR-FTIR and UV-Vis spectral markers for assessing the Prooxidant/Antioxidant Balance (PAB) in white wines

The browning index (BI), based on the absorbance at 420 nm, is a common oxidation marker in white wines, typically measured after thermal stress (50–60 °C for 5 up to 12 days) in air-saturated wines.

Characterization of commercial enological tannins and its effect on human saliva diffusion

Commercial oenological tannins (TECs) are widely used in the wine industry. TECs are rich in condensed tannins, hydrolyzable tannins or a mixture of both. Wine grapes are a important source of proanthocyanidins or condensed tannins while oak wood possess a high concentration of hydrolyzable tannins (Obreque-Slier et al., 2009). TECs contribute with the antioxidant capacity of wine, catalyze oxide-reduction reactions and participate in the removal of sulfur compounds and metals.

Exploring the gene regulatory networks of WRKY family in grapevine (Vitis vinifera  L.) using DAP-Seq

The recent development of regulatory genomics has raised increasing interest in plant research since transcriptional regulation of genes plays a pivotal role in many biological processes. By shedding light on the target genes of the various transcription factors (TFs), it is therefore possible to infer the influence they exert on the different molecular mechanisms. In this regard, the attention was focused on WRKYs, a family of TFs almost exclusively found in plant species. In grapevine, WRKYs are involved in several biological processes, playing a key role in berry development, hormonal balance and signalling, biotic and abiotic stresses responses, and secondary metabolites biosynthesis.

ADDITION OF OAK WOOD ALTERNATIVE PRODUCTS: QUALITATIVE AND SENSORIAL EFFECTS FOR A WHITE WINE OF ALIGOTE

Wines matured in contact with wood are extremely popular with consumers all over the world. Oak wood allows the organoleptic characteristics of wine to be modified. Wines are enriched with volatile and non-volatile compounds extracted from the wood. The aromas extracted from oak wood contribute to the construction of the wine’s aromatic profile and the main polyphenols extracted can modify taste perceptions such as astringency and bitterness. All the compounds extracted from the wood thus contribute to the balance and quality of the wines.

SENSORY DEFINITION OF A TECHNICAL UNAVOIDABLE TRANSFER OF AROMA COMPOUNDS VIA SEALING IN A BOTTLING LINE IN ORDER TO PREVENT PROSECUTION DUE TO FRAUDULENT AROMATIZATION OF A SUBSEQUENTLY FILLED WINE

In 2020, 12% of all bottled German wines were aromatized, which may increase further due to rising popularity of dealcoholized wines. As sealing polymers of a bottling line absorb aroma compounds and may release them into regular wines in the next filling¹, this unintentional carry-over bears the risk to violate the legal ban of any aromatization of regular wine. However, following EU legislation, German food control authorities accept a technical unavoidable transfer of aroma compounds, if this is of no sensory significance.