IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Multivariate data analysis applied on Fourier Transform Infrared spectroscopy for the prediction of tannins levels during red wine fermentation

Multivariate data analysis applied on Fourier Transform Infrared spectroscopy for the prediction of tannins levels during red wine fermentation

Abstract

Red wine is a beverage with one of the highest polyphenol concentration, which are extracted during the maceration step of the winemaking process. Sensory perception such as astringency and bitterness are mainly related to tannin concentration and composition. However, quick analytical measurement of polyphenolic compounds can be a real challenge for monitoring their extraction during fermentation. Many methods were developed to analyzed polyphenols in wine, but they are time-consuming and require chemistry skills and equipment, not suitable for a rapid routine analysis. Thus, development of predictive models
using Fourier transform infrared (FTIR) spectroscopy coupled with chemometrics analysis appears to be a reliable and rapid method to determine polyphenolic content during wines fermentation.

For this purpose, this work sought to determine correlation between FTIR analysis and regular quantification methods for tannins, for different samples, covering three different vintages with two different grape varieties, from the beginning to the end of the extraction process. The search for diversity was highlighted during the selection of samples, to provide the best representation of the winemaking process. Total tannin concentration was analyzed by protein and polysaccharide precipitation. Flavanol composition was obtained by HPLC-UV after phloroglucinolysis reaction. FTIR spectra were registered between 925 and 5011 cm-1 using Winescan. Correlation between spectral analyzes and the various analytical information obtained were sought with partial least squares (PLS) multivariate regression analysis, for designing prediction models. The different models were tested with cross validation, and validation with an external set of samples to the calibration. For the external validation, the dataset was split into calibration and validation using Kennard-Stone algorithm.

The objective of this study was to demonstrate the interest of FTIR with PLS multivariate regression analysis to predict tannins concentration during winemaking. Correlations obtained show relevant results for the studied parameters, with models coefficients for cross validation higher than 0.8 for flavanol content (except for epigallocatechin) and higher than 0.9 for total tannins concentrations. The results with external validation are slightly lower for total tannins concentrations, with coefficient of prediction around 0.87, and show a more important decrease for flavanol content, with coefficient of prediction close to 0.7. If models for total tannins already show a high robustness and prediction, models for flavanol content must be improve with other samples. However, the results are encouraging and an
increase of the robustness could allow following flavanol content during winemaking. This work is the first step for the construction of predictive models to quantify different flavanol parameters in red wine fermentation by FTIR spectroscopy.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Miramont Clément¹, Jourdes Michaël¹, Selberg Torben³, Winther J∅rgensenKasper³, Thiis Heide Søren³and Teissèdre Pierre-Louis¹

¹UR Œnologie EA 4577, Université de Bordeaux, ISVV
²USC 1366 INRAE, IPB, INRAE, ISVV
³FOSS Analytical A/

Contact the author

Keywords

Tannins, Flavanol, Partial least squares regression, Fourier Transform InfraRed

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Wine without added SO2: Oxygen impact and color evolution during red wine aging

SO2 play a major role in wine stability and evolution during its aging and storage. Winemaking without SO2 is a big challenge for the winemakers since the lack of SO2 affects directly the wine chemical evolution such as the aromas compounds as well as the phenolic compounds. During the red wine aging, phenolic compounds such as anthocyanin, responsible of the red wine colour, and tannins, responsible of the mouthfeel organoleptic properties of wine, evolved quickly from the winemaking process to aging [1]. A lot of new interaction and molecules occurred lead by oxygen[2] thus the lack of SO2 will induce wine properties changes. Nowadays, the phenolic composition of the wine without added SO2 have not been clearly reported.

The selection of Vitis vinifera L. cultivars based on berry texture, iPBS genetic markers, and noble rot susceptibility analysis

The selection of a suitable grape variety (Vitis vinifera L.) for specific viticulture and oenology objectives is a considerable challenge in the context of climate change.

La protection des terroirs viticoles dans l’AOC Côtes du Rhône (France)

[English version below]

Les terroirs viticoles, et plus particulièrement ceux des vignobles AOC, sont aujourd’hui menacés par de multiples agressions. Ces territoires sont non seulement l’outil de production

Insulative effects of vine shelters may impact growth potential and cold hardiness of young vines

Context and purpose of the study. The seasons immediately following planting are key growth stages where young vines are particularly susceptible to various forms of damage.

Effects of soil water content and environmental conditions on vine water status and gas exchange of Vitis vinifera L. cv. chardonnay

Vine water status has a significant influence on vineyard yield and berry composition (Williams and Matthews, 1990; Williams et al., 1994). It has been hypothesized that the response of plants to soil water deficits may be due to some sort of “root signal” (Davies and Zhang, 1991). This signal probably arises due to the roots sensing a reduction in soil water content or an increase in the mecanical impedance as the soil dries out.