IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Multivariate data analysis applied on Fourier Transform Infrared spectroscopy for the prediction of tannins levels during red wine fermentation

Multivariate data analysis applied on Fourier Transform Infrared spectroscopy for the prediction of tannins levels during red wine fermentation

Abstract

Red wine is a beverage with one of the highest polyphenol concentration, which are extracted during the maceration step of the winemaking process. Sensory perception such as astringency and bitterness are mainly related to tannin concentration and composition. However, quick analytical measurement of polyphenolic compounds can be a real challenge for monitoring their extraction during fermentation. Many methods were developed to analyzed polyphenols in wine, but they are time-consuming and require chemistry skills and equipment, not suitable for a rapid routine analysis. Thus, development of predictive models
using Fourier transform infrared (FTIR) spectroscopy coupled with chemometrics analysis appears to be a reliable and rapid method to determine polyphenolic content during wines fermentation.

For this purpose, this work sought to determine correlation between FTIR analysis and regular quantification methods for tannins, for different samples, covering three different vintages with two different grape varieties, from the beginning to the end of the extraction process. The search for diversity was highlighted during the selection of samples, to provide the best representation of the winemaking process. Total tannin concentration was analyzed by protein and polysaccharide precipitation. Flavanol composition was obtained by HPLC-UV after phloroglucinolysis reaction. FTIR spectra were registered between 925 and 5011 cm-1 using Winescan. Correlation between spectral analyzes and the various analytical information obtained were sought with partial least squares (PLS) multivariate regression analysis, for designing prediction models. The different models were tested with cross validation, and validation with an external set of samples to the calibration. For the external validation, the dataset was split into calibration and validation using Kennard-Stone algorithm.

The objective of this study was to demonstrate the interest of FTIR with PLS multivariate regression analysis to predict tannins concentration during winemaking. Correlations obtained show relevant results for the studied parameters, with models coefficients for cross validation higher than 0.8 for flavanol content (except for epigallocatechin) and higher than 0.9 for total tannins concentrations. The results with external validation are slightly lower for total tannins concentrations, with coefficient of prediction around 0.87, and show a more important decrease for flavanol content, with coefficient of prediction close to 0.7. If models for total tannins already show a high robustness and prediction, models for flavanol content must be improve with other samples. However, the results are encouraging and an
increase of the robustness could allow following flavanol content during winemaking. This work is the first step for the construction of predictive models to quantify different flavanol parameters in red wine fermentation by FTIR spectroscopy.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Miramont Clément¹, Jourdes Michaël¹, Selberg Torben³, Winther J∅rgensenKasper³, Thiis Heide Søren³and Teissèdre Pierre-Louis¹

¹UR Œnologie EA 4577, Université de Bordeaux, ISVV
²USC 1366 INRAE, IPB, INRAE, ISVV
³FOSS Analytical A/

Contact the author

Keywords

Tannins, Flavanol, Partial least squares regression, Fourier Transform InfraRed

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

DETERMINATION OF FREE AMINO ACIDS, AMINO ACID POTENTIAL AND PROTEASE ACTIVITY IN THE LEES AND STILL WINES OF CHAMPAGNE

Prior to winemaking, organic or mineral nitrogen compound concentrations are usually measured in the vineyard and in grape musts. These indicators facilitate vine cultivation decisions, usually through yield or vigor. During vinification, yeast and bacteria metabolize nitrogen compounds in the musts in order to generate biomass. After fermentation, the microorganisms rerelease a part of this nitrogen as soluble compounds into the wines. Another part remains bound in the lees and can be lost during racking. The must’s natural nitrogen quantities, additional supplements during fermentation, and lees contact management enhance the release of nitrogen compounds to the wines. During ageing these nitrogen compounds – primarily the amino acids – are implicated in the generation of odorous compounds such as heterocycles(1).

The impact of vine nitrogen status on aroma potential expression in Vitis vinifera L. cv. Sauvignon blanc

In interaction with climate and genetic or human factors, the soil is a major component of the viticulture terroir. The mineral composition of the soil influences vine performance and wine sensory attributes. Among the elements that vines take from the soil, nitrogen is the one that has the strongest impact on vine physiology, vigor and grape composition. In addition to its major effect on primary metabolites in berries, nitrogen plays also a decisive role in the secondary metabolism, especially in the production of key compounds for berries quality, like volatile thiols, methoxypyrazines and glutathione (GSH).

A microbial overview of txakoli wine: the case of three appellations of origin

The Txakoli, a white wine produced in the Basque Country (North of Spain), has recently gained popularity due to wine quality improvement and increase in both acreages of production and wine consumption. The aim of this study was to characterize the chemical and microbiological differences between Txakoli wines made with grapes from different sites.

Impact of SO2 addition before alcoholic fermentation on the oxidative stability of Chardonnay white wines

Sulfites (SO2) addition during winemaking is a widespread practice worldwide. This addition is realized at different steps of the winemaking due to the antimicrobial and antioxidant capacity of SO2. In a context of understanding white wines oxidative stability, knowledge about the impact of SO2 on the wine molecular diversity, especially compounds involved in the antioxidant capacity of wine, appears to be very important. In recent years, some studies have shown that SO2 can react with a large number of wine compounds resulting in the formation of numerous adducts. The diversity of compounds involved is important including in particular pyruvic acid, 2-keto-glutaric acid, glyceraldehyde, sugar, phenolics compounds but also amino acids or peptides. Moreover Roullier-Gall et al. have shown using FT-ICR-MS analysis that the molecular composition of wines remains impacted by addition of SO2 to the must (0, 4 and 8 g/hL SO2), several years after winemaking. Indeed, wines made from protected must (8g/hL SO2) contain a larger diversity of CHOS and CHONS compounds than wines made from unprotected must (0 g/hL SO2). The study of the impact of glutathione addition on the sensory oxidative stability has further shown that CHOS and CHONS compounds (amino acids, aromatic compounds and peptides) are markers of the antioxidant metabolome of white wines. This suggests that CHOS and CHONS compounds arise from SO2 adducts formation but also from a protecting effect of SO2 on the antioxidant metabolome of white wines.

Consumer perception of wine bottle weight and its impact on sustainability

In the context of sustainability, this study evaluated consumer perception regarding the impact of glass bottle weight on wine valuation.