IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Multivariate data analysis applied on Fourier Transform Infrared spectroscopy for the prediction of tannins levels during red wine fermentation

Multivariate data analysis applied on Fourier Transform Infrared spectroscopy for the prediction of tannins levels during red wine fermentation

Abstract

Red wine is a beverage with one of the highest polyphenol concentration, which are extracted during the maceration step of the winemaking process. Sensory perception such as astringency and bitterness are mainly related to tannin concentration and composition. However, quick analytical measurement of polyphenolic compounds can be a real challenge for monitoring their extraction during fermentation. Many methods were developed to analyzed polyphenols in wine, but they are time-consuming and require chemistry skills and equipment, not suitable for a rapid routine analysis. Thus, development of predictive models
using Fourier transform infrared (FTIR) spectroscopy coupled with chemometrics analysis appears to be a reliable and rapid method to determine polyphenolic content during wines fermentation.

For this purpose, this work sought to determine correlation between FTIR analysis and regular quantification methods for tannins, for different samples, covering three different vintages with two different grape varieties, from the beginning to the end of the extraction process. The search for diversity was highlighted during the selection of samples, to provide the best representation of the winemaking process. Total tannin concentration was analyzed by protein and polysaccharide precipitation. Flavanol composition was obtained by HPLC-UV after phloroglucinolysis reaction. FTIR spectra were registered between 925 and 5011 cm-1 using Winescan. Correlation between spectral analyzes and the various analytical information obtained were sought with partial least squares (PLS) multivariate regression analysis, for designing prediction models. The different models were tested with cross validation, and validation with an external set of samples to the calibration. For the external validation, the dataset was split into calibration and validation using Kennard-Stone algorithm.

The objective of this study was to demonstrate the interest of FTIR with PLS multivariate regression analysis to predict tannins concentration during winemaking. Correlations obtained show relevant results for the studied parameters, with models coefficients for cross validation higher than 0.8 for flavanol content (except for epigallocatechin) and higher than 0.9 for total tannins concentrations. The results with external validation are slightly lower for total tannins concentrations, with coefficient of prediction around 0.87, and show a more important decrease for flavanol content, with coefficient of prediction close to 0.7. If models for total tannins already show a high robustness and prediction, models for flavanol content must be improve with other samples. However, the results are encouraging and an
increase of the robustness could allow following flavanol content during winemaking. This work is the first step for the construction of predictive models to quantify different flavanol parameters in red wine fermentation by FTIR spectroscopy.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Miramont Clément¹, Jourdes Michaël¹, Selberg Torben³, Winther J∅rgensenKasper³, Thiis Heide Søren³and Teissèdre Pierre-Louis¹

¹UR Œnologie EA 4577, Université de Bordeaux, ISVV
²USC 1366 INRAE, IPB, INRAE, ISVV
³FOSS Analytical A/

Contact the author

Keywords

Tannins, Flavanol, Partial least squares regression, Fourier Transform InfraRed

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Changes in flavonol profile are a reliable indicator to assess the exposure of red grape berries to solar radiation and canopy architecture

Exposure to solar radiation affects berry composition through photomorphogenesis or changes in temperature. Flavonol synthesis is upregulated by UV‐B radiation

Managing extraction of colour, tannin and methoxypyrazines in Pinot noir grapes treated by leaf removal

Managing extraction of tannins and green aroma compounds attributed from methoxypyrazines in winemaking is crucial for producing high quality Pinot noir wine. This study1 investigated the impact of leaf removal on concentrations of anthocyanins, tannins, and methoxypyrazines in Pinot noir grapes and resultant wines.

Using multifactorial analysis to evaluate the contribution of terroir components to the oenological potential of grapes at harvest

The oenological potential of grapes at harvest depends on a combination of the major components of Terroir: the climate, the soil, the plant material, the training system and the crop management.

A geologic numeric mapping, with geophysic transects, of Marsannay’s vineyard (Burgundy, France)

Marsannay est l’appellation la plus septentrionale de la Côte de Nuits, à la limite Sud de Dijon. Elle regroupe trois villages, Chenôve, Marsannay-la-Côte et Couchey, et constitue l’appellation la plus vaste de la Côte de Nuits avec 315 hectares en A.O.C. Elle possède uniquement des niveaux d’appellations régionales et communales depuis 1987.

A better understanding of the climate effect on anthocyanin accumulation in grapes using a machine learning approach

The current climate changes are directly threatening the balance of the vineyard at harvest time. The maturation period of the grapes is shifted to the middle of the summer, at a time when radiation and air temperature are at their maximum. In this context, the implementation of corrective practices becomes problematic. Unfortunately, our knowledge of the climate effect on the quality of different grape varieties remains very incomplete to guide these choices. During the Innovine project, original experiments were carried out on Syrah to study the combined effects of normal or high air temperature and varying degrees of exposure of the berries to the sun. Berries subjected to these different conditions were sampled and analyzed throughout the maturation period. Several quality characteristics were determined, including anthocyanin content. The objective of the experiments was to investigate which climatic determinants were most important for anthocyanin accumulation in the berries. Temperature and irradiance data, observed over time with a very thin discretization step, are called functional data in statistics. We developed the procedure SpiceFP (Sparse and Structured Procedure to Identify Combined Effects of Functional Predictors) to explain the variations of a scalar response variable (a grape berry quality variable for example) by two or three functional predictors (as temperature and irradiance) in a context of joint influence of these predictors. Particular attention was paid to the interpretability of the results. Analysis of the data using SpiceFP identified a negative impact of morning combinations of low irradiance (lower than about 100 μmol m−2 s−1 or 45 μmol m−2 s−1 depending on the advanced-delayed state of the berries) and high temperature (higher than 25oC). A slight difference associated with overnight temperature occurred between these effects identified in the morning.