IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Multivariate data analysis applied on Fourier Transform Infrared spectroscopy for the prediction of tannins levels during red wine fermentation

Multivariate data analysis applied on Fourier Transform Infrared spectroscopy for the prediction of tannins levels during red wine fermentation

Abstract

Red wine is a beverage with one of the highest polyphenol concentration, which are extracted during the maceration step of the winemaking process. Sensory perception such as astringency and bitterness are mainly related to tannin concentration and composition. However, quick analytical measurement of polyphenolic compounds can be a real challenge for monitoring their extraction during fermentation. Many methods were developed to analyzed polyphenols in wine, but they are time-consuming and require chemistry skills and equipment, not suitable for a rapid routine analysis. Thus, development of predictive models
using Fourier transform infrared (FTIR) spectroscopy coupled with chemometrics analysis appears to be a reliable and rapid method to determine polyphenolic content during wines fermentation.

For this purpose, this work sought to determine correlation between FTIR analysis and regular quantification methods for tannins, for different samples, covering three different vintages with two different grape varieties, from the beginning to the end of the extraction process. The search for diversity was highlighted during the selection of samples, to provide the best representation of the winemaking process. Total tannin concentration was analyzed by protein and polysaccharide precipitation. Flavanol composition was obtained by HPLC-UV after phloroglucinolysis reaction. FTIR spectra were registered between 925 and 5011 cm-1 using Winescan. Correlation between spectral analyzes and the various analytical information obtained were sought with partial least squares (PLS) multivariate regression analysis, for designing prediction models. The different models were tested with cross validation, and validation with an external set of samples to the calibration. For the external validation, the dataset was split into calibration and validation using Kennard-Stone algorithm.

The objective of this study was to demonstrate the interest of FTIR with PLS multivariate regression analysis to predict tannins concentration during winemaking. Correlations obtained show relevant results for the studied parameters, with models coefficients for cross validation higher than 0.8 for flavanol content (except for epigallocatechin) and higher than 0.9 for total tannins concentrations. The results with external validation are slightly lower for total tannins concentrations, with coefficient of prediction around 0.87, and show a more important decrease for flavanol content, with coefficient of prediction close to 0.7. If models for total tannins already show a high robustness and prediction, models for flavanol content must be improve with other samples. However, the results are encouraging and an
increase of the robustness could allow following flavanol content during winemaking. This work is the first step for the construction of predictive models to quantify different flavanol parameters in red wine fermentation by FTIR spectroscopy.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Miramont Clément¹, Jourdes Michaël¹, Selberg Torben³, Winther J∅rgensenKasper³, Thiis Heide Søren³and Teissèdre Pierre-Louis¹

¹UR Œnologie EA 4577, Université de Bordeaux, ISVV
²USC 1366 INRAE, IPB, INRAE, ISVV
³FOSS Analytical A/

Contact the author

Keywords

Tannins, Flavanol, Partial least squares regression, Fourier Transform InfraRed

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

MOVING FROM SULFITES TO BIOPROTECTION: WHICH IMPACT ON CHARDONNAY WINE?

Over the last few years, several tools have been developed to reduce the quantity of sulfites used during winemaking, including bioprotection. Although its effectiveness in preventing the development of spoilage microorganisms has been proven, few data are available on the impact of sulfite substitution by bioprotection on the final product. The objective of this study was therefore to characterize Chardonnay wines with the addition of sulfite or bioprotection in the pre-fermentation stage. The effects of both treatments on resulting matrices was evaluated at several scales: analysis of classical oenological parameters, antioxidant capacity, phenolic compounds, non-volatile metabolome and sensory profile.

Highlighting the several chemical situations of Dimethyl sulfide in wine

Dimethyl sulfide (DMS) is a compound that accumulate in wine for the early years of ageing 1. During this stage, which is often carried out in the bottle, the environmental conditions are conducive to the release of DMS from its precursors, already present in grapes2

Zonage viticole des surfaces potentielles dans la vallée Centrale de Tarija (Bolivie)

La présente étude de zonage viticole a été faite dans la région de la vallée Central de Tarija(VCT), dans la ville de Tarija, au Sud de la Bolivie; une région avec plus de 400 années de tradition qui présente une vitiviniculture de haute qualité. La Vallée possède une surface total de 332 milles ha.; existant des vignobles entre 1660 y 2300 m.s.n.m. et dans ce rang d’altitude il existe 91 mille ha.

Estudio de fertilidad en variedades blancas en Castilla-la Mancha

La adaptación de nuevas variedades a zonas de cultivo fuera de su área de origen presenta múltiples interrogantes. En Castilla-La Mancha se está produciendo en los últimos años una gran inquietud por la diversificación y la reconversión de variedades.

LC-MS based metabolomics discriminates premium from varietal chilean Cabernet Sauvignon cv. Wines

Aim of the study was to investigate the metabolomic differences between Chilean Cabernet Sauvignon wines, divided according to their quality in two main groups: “Varietal” and “Premium”, and to point out metabolites tentative markers of their chemical signature and sensorial quality. Initially, 150 (50 x 3 biological replicates) experimental wines were produced by the same semi-industrial process, which covered 8 different Chilean valleys. The wine classification made by experts, divided the wines into two major groups (“Varietal” and “Premium”) and four subgroups (two for each major group). All the samples were analyzed according to a robust LC-MS based untargeted work-flow (Arapitsas et al 2018), and the proposed minimum reporting standards for chemical analysis of the Metabolomics Standards Initiative (Sumner et al 2007)