IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Infrared spectroscopy investigation of fresh grapevine organs for clustering and classification.

Infrared spectroscopy investigation of fresh grapevine organs for clustering and classification.

Abstract

The spectral information acquired from fresh whole grapevine organs have yet to be fully explored. Infrared spectroscopy provides the means to rapidly measure fresh plant material and providing extensive information on the physical and chemical structure of samples. This study aimed to explore the spectra of fresh grapevine shoots, leaves, and berries throughout the growing season for clustering and classification. Sampling was performed across two vintages (2019-2020; 2020-2021) from November to March. Five locations, seven cultivars, and 17 commercial vineyards were included. Collection of whole shoots, including leaves and grape bunches, were performed on a monthly basis. The fresh grapevine organs were analysed using three spectroscopy methods within 24-36 hours of sampling. Mid-infrared (MIR) and near-infrared (NIR), making use of a solid probe (NIR-SP) and a rotating sphere (NIR-RS), were investigated. The raw spectra were firstly investigated using principal component analysis (PCA) followed by a more novel chemometric approach, unsupervised
self-organising maps (SOM). PCA as well as unsupervised SOM showed the most considerable grouping based on organ type. Additionally, the unsupervised SOM showed separation trends based on phenological stage. Investigation of the datasets per organ with SOM showed separation based on the phenological stage for berries and shoots, as well as shoots clustering based on lignification. Supervised SOM were examined for classification based on the observed clustering per organ type, phenological stage, and lignification. The accurate prediction of organ at 90.3% was possible for the NIR-SP dataset for 2019-2021. Overlapping of various phenological stages were seen for the grape berry datasets, but prediction improved to 85.6% for the NIR-RS 2019-2021 dataset when certain phenological
stages were grouped together. Accurate predictions of lignified and unlignified shoots were also seen for the NIR-SP 2019-2021 and NIR-RS 2020-2021 datasets at 74.4% and 89.9% respectively. The possibility of using spectral variable selection to improve the supervised SOM predictions were explored and promising results obtained for certain datasets. Following variable selection with OPLS-DA and S-plots, the prediction of shoots and leaves improved by 14% for the NIR-RS 2020-2021 dataset. The prediction of lignified and unlignified shoots improved considerably to 92.3% for the NIR-SP 2019-2021 dataset and 95.9% for the NIR-RS 2020-2021 dataset. This study showed the extensive information available in infrared spectra of fresh grapevine organs and how the information could be used to achieve important clustering and classifications objectives

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Van Wyngaard Elizma¹, Blancquaert Erna¹, Nieuwoudt Hélène¹and Aleixandre-Tudo Jose Luis1,²

¹South African Grape and Wine Research Institute (SAGWRI), Department of Viticulture and Oenology, Stellenbosch University, Stellenbosch, South Africa
²Instituto de Ingeniería de Alimentos para el Desarrollo (IIAD), Departamento de Tecnologia de Alimentos, Universidad Politécnica de Valencia, Valencia, Spain

Contact the author

Keywords

Spectroscopy, grapevine organs, clustering, classification

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Towards the understanding of wine distillation in the production of brandy de Jerez. Chemical and sensory characterization of two distillation methods: continuous and batch distillation

Brandy de Jerez (BJ) is a spirit drink made exclusively from spirits and wine distillates and is characterized by the use of casks for aging that previously contained Sherries. The quality and sensory complexity of BJ depend on the raw materials and some factors: grape variety, conditions during processing the wine and its distillation, as well as the aging in the cask. Therefore, the original compounds of the grapes from which it comes are of great interest being in most cases the Airén variety. Their relationship with the quality of the musts and the wines obtained from them has been studied (1) and varies each year of harvest depending on the weather conditions (2).

Techniques of delimitation in France

La pratique de la délimitation des aires des Appellations d’Origine Contrôlées françaises découle de la définition de la notion de terroir en Appellation

Determination of titratable acidity, sugar and organic acid content in red and white wine grape cultivars during ripening by VIS–NIR hy¬perspectral imaging

Grape harvest time is one of the most fundamental aspects that affect grape quality and thus wine quality. Many factors influence the decision of harvest; among them technological and phenolic maturity of grape. Technological ripeness is mainly related to sugar concentration, titratable acidity and pH. Conventional methods for chemical analysis of grapes are normally sample-destructive, time-consuming, include laborious sample preparation steps, and generate chemical waste, thereby limiting their utility in online/in-line quality monitoring. Moreover, destructive analyses can be performed only on a limited number of fruit pieces and, thus, their statistical relevance could be limited. This study evaluated the ability of a lab-scale hyperspectral imaging (HYP-IM) technique to predict titratable acidity, organic acid and sugar content of grapes. Samples of Cabernet franc and Chenin blanc grapes were consecutively collected six times at weekly intervals after veraison. The images were recorded thanks to the hyperspectral imaging camera Pica L (Resonon) in a spectral range from 400 to 1000 nm. Statistics were performed using Microsoft Xlstat software. Successively, the berries were analyzed for their sugar (glucose and fructose) and organic acid (malic and tartaric acid) content and titratable acidity according to usual methods.

Characterization of spoilage yeasts from Malbec grapes from San Rafael wine region (Argentina)

The yeast ecosystem in grape musts is quite broad and depends on the region and the health of the grapes. Within this, there are yeasts that can generate fermentative deviations and/or cause defects in the wine. It is very important to address this issue because there are significant economic losses in the wine industry when the fermentation process and/or the organoleptic characteristics of the wine are negatively affected, even more today since climate change has a marked effect on the composition of this ecosystem. The aim of this work is to characterize the behavior regarding detrimental oenological features of potential spoilage yeasts isolated from viticultural environments.

Impact of innovative canopy management techniques on grape and wine quality under Mediterranean summer conditions

The recent effects on temperature and rainfall caused by global warming pose a serious threat to the wine industry worldwide, mainly in terms of a loss of quality in the wines produced.