IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Infrared spectroscopy investigation of fresh grapevine organs for clustering and classification.

Infrared spectroscopy investigation of fresh grapevine organs for clustering and classification.

Abstract

The spectral information acquired from fresh whole grapevine organs have yet to be fully explored. Infrared spectroscopy provides the means to rapidly measure fresh plant material and providing extensive information on the physical and chemical structure of samples. This study aimed to explore the spectra of fresh grapevine shoots, leaves, and berries throughout the growing season for clustering and classification. Sampling was performed across two vintages (2019-2020; 2020-2021) from November to March. Five locations, seven cultivars, and 17 commercial vineyards were included. Collection of whole shoots, including leaves and grape bunches, were performed on a monthly basis. The fresh grapevine organs were analysed using three spectroscopy methods within 24-36 hours of sampling. Mid-infrared (MIR) and near-infrared (NIR), making use of a solid probe (NIR-SP) and a rotating sphere (NIR-RS), were investigated. The raw spectra were firstly investigated using principal component analysis (PCA) followed by a more novel chemometric approach, unsupervised
self-organising maps (SOM). PCA as well as unsupervised SOM showed the most considerable grouping based on organ type. Additionally, the unsupervised SOM showed separation trends based on phenological stage. Investigation of the datasets per organ with SOM showed separation based on the phenological stage for berries and shoots, as well as shoots clustering based on lignification. Supervised SOM were examined for classification based on the observed clustering per organ type, phenological stage, and lignification. The accurate prediction of organ at 90.3% was possible for the NIR-SP dataset for 2019-2021. Overlapping of various phenological stages were seen for the grape berry datasets, but prediction improved to 85.6% for the NIR-RS 2019-2021 dataset when certain phenological
stages were grouped together. Accurate predictions of lignified and unlignified shoots were also seen for the NIR-SP 2019-2021 and NIR-RS 2020-2021 datasets at 74.4% and 89.9% respectively. The possibility of using spectral variable selection to improve the supervised SOM predictions were explored and promising results obtained for certain datasets. Following variable selection with OPLS-DA and S-plots, the prediction of shoots and leaves improved by 14% for the NIR-RS 2020-2021 dataset. The prediction of lignified and unlignified shoots improved considerably to 92.3% for the NIR-SP 2019-2021 dataset and 95.9% for the NIR-RS 2020-2021 dataset. This study showed the extensive information available in infrared spectra of fresh grapevine organs and how the information could be used to achieve important clustering and classifications objectives

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Van Wyngaard Elizma¹, Blancquaert Erna¹, Nieuwoudt Hélène¹and Aleixandre-Tudo Jose Luis1,²

¹South African Grape and Wine Research Institute (SAGWRI), Department of Viticulture and Oenology, Stellenbosch University, Stellenbosch, South Africa
²Instituto de Ingeniería de Alimentos para el Desarrollo (IIAD), Departamento de Tecnologia de Alimentos, Universidad Politécnica de Valencia, Valencia, Spain

Contact the author

Keywords

Spectroscopy, grapevine organs, clustering, classification

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Entomopathogenic nematodes application for controlling Lobesia botrana in grapevine and their impact on grapevine quality 

Entomopathogenic nematodes (EPN) are well-known biological control agents combined with specific adjuvants that now allow their use against aerial pests. Lobesia botrana (Lepidoptera: Tortricidae) is one of the major harmful pests detected in worldwide vineyards. Previous studies demonstrated that the EPNs Steinernema feltiae and S. carpocapsae could control L. botrana. The hypothesis was that the best combination of EPN-adjuvant/timing (season/temperatures) will support the use of EPN in the vineyard against L. botrana with no impact on the grape performance.

Exploring between- and within-vineyard variability of “Malvasia di Candia aromatica” vineyards from Colli Piacentini

Several studies demonstrated how climate and soil may be key drivers of variability at different scales.

Metatranscriptomic analysis of “aszú” berries: the potential role of the most important species of the grape microbiota in the aroma of wines with noble rot

Botrytis cinerea has more than 1200 host plants and is one of the most important plant pathogens in viticulture. Under certain environmental conditions, it can lead to the development of a noble rot, which results in a specific metabolic profile, altering physical texture and chemical composition. The other microbes involved in this process and their functional genes are poorly characterised. We have generated metatranscriptomic [1,2] and DNA metabarcoding data from three months of the Furmint grape variety, representing the four phases of noble rot, from healthy berries to completely dried berries.

Legal protection of the vitivinicultural terroirs in Yamanashi Prefecture, Japan

This study analyses the actual situation regarding the legal protection of the vitivinicultural terroirs in Yamanashi Prefecture, the centre of Japanese wine industry with more than 150 years of wine-making tradition.

The effect of terroir zoning on pomological, chemical and aromatic composition of Muscat d’Alexandrie grapevine variety cultivated in Tunisia

La composition du raisin de la variété Muscat d’Alexandrie a été étudiée dans trois terroirs différents au Nord-Est de la Tunisie (RafRaf, Baddar et Kelibia).
Des échantillons de raisins ont été récoltés à maturité industrielle durant les saisons 2001 et 2002 dans les trois régions citées. Les paramètres pomologiques (poids moyen de la grappe et de la baie) et physico-chimiques