IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Infrared spectroscopy investigation of fresh grapevine organs for clustering and classification.

Infrared spectroscopy investigation of fresh grapevine organs for clustering and classification.

Abstract

The spectral information acquired from fresh whole grapevine organs have yet to be fully explored. Infrared spectroscopy provides the means to rapidly measure fresh plant material and providing extensive information on the physical and chemical structure of samples. This study aimed to explore the spectra of fresh grapevine shoots, leaves, and berries throughout the growing season for clustering and classification. Sampling was performed across two vintages (2019-2020; 2020-2021) from November to March. Five locations, seven cultivars, and 17 commercial vineyards were included. Collection of whole shoots, including leaves and grape bunches, were performed on a monthly basis. The fresh grapevine organs were analysed using three spectroscopy methods within 24-36 hours of sampling. Mid-infrared (MIR) and near-infrared (NIR), making use of a solid probe (NIR-SP) and a rotating sphere (NIR-RS), were investigated. The raw spectra were firstly investigated using principal component analysis (PCA) followed by a more novel chemometric approach, unsupervised
self-organising maps (SOM). PCA as well as unsupervised SOM showed the most considerable grouping based on organ type. Additionally, the unsupervised SOM showed separation trends based on phenological stage. Investigation of the datasets per organ with SOM showed separation based on the phenological stage for berries and shoots, as well as shoots clustering based on lignification. Supervised SOM were examined for classification based on the observed clustering per organ type, phenological stage, and lignification. The accurate prediction of organ at 90.3% was possible for the NIR-SP dataset for 2019-2021. Overlapping of various phenological stages were seen for the grape berry datasets, but prediction improved to 85.6% for the NIR-RS 2019-2021 dataset when certain phenological
stages were grouped together. Accurate predictions of lignified and unlignified shoots were also seen for the NIR-SP 2019-2021 and NIR-RS 2020-2021 datasets at 74.4% and 89.9% respectively. The possibility of using spectral variable selection to improve the supervised SOM predictions were explored and promising results obtained for certain datasets. Following variable selection with OPLS-DA and S-plots, the prediction of shoots and leaves improved by 14% for the NIR-RS 2020-2021 dataset. The prediction of lignified and unlignified shoots improved considerably to 92.3% for the NIR-SP 2019-2021 dataset and 95.9% for the NIR-RS 2020-2021 dataset. This study showed the extensive information available in infrared spectra of fresh grapevine organs and how the information could be used to achieve important clustering and classifications objectives

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Van Wyngaard Elizma¹, Blancquaert Erna¹, Nieuwoudt Hélène¹and Aleixandre-Tudo Jose Luis1,²

¹South African Grape and Wine Research Institute (SAGWRI), Department of Viticulture and Oenology, Stellenbosch University, Stellenbosch, South Africa
²Instituto de Ingeniería de Alimentos para el Desarrollo (IIAD), Departamento de Tecnologia de Alimentos, Universidad Politécnica de Valencia, Valencia, Spain

Contact the author

Keywords

Spectroscopy, grapevine organs, clustering, classification

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

The effect of different irrigation regimes on the indigenous Cypriot grape variety Xynisteri and comparison to Sauvignon blanc

Aims: The aims of this study were to (1) assess the response of the indigenous Cypriot variety Xynisteri to different irrigation regimes and (2) compare the performance of Xynisteri to Sauvignon Blanc grown in pots with different irrigation regimes.

Quantification of γ-nonalactone in botrytized and non-botrytized New Zealand and Australian wines

ƴ-Nonalactonehas been identified as a significant contributor to the aroma profile of a range of wines and is associated with stonefruit and coconut descriptors.

Modelling grape and wine quality through PLS Spline statistical method

Started in 1994, this project intends to explain quality of grapes and wines using data of soil, climate and vineyard that are currently used in field trials.

Short-term canopy strategies to enhance grapevine adaptation to climate change

Context and purpose of the study. Viticulture faces significant challenges due to climate change, with increased frequency of extreme weather events impacting grapevine growth, grape quality, and wine production.

IMPACT OF THE WINES’ QUALITY ON THE WINE DISTILLATES’ ORGANOLEPTIC PROFILE

Brandy de Jerez (BJ) is a spirit drink made exclusively from spirits and wine distillates and is characterized by the use of casks for aging that previously contained Sherries. The quality and sensory complexity of BJ depend on the raw materials and some factors: grape variety, conditions during processing the wine and its distillation, as well as the aging in the cask. Therefore, the original compounds of the grapes from which it comes are of great interest (1 y 2) being in most cases the Airén variety. Their relationship with the quality of the musts and the wines obtained from them has been studied (3) and varies each year of harvest depending on the weather conditions (4).