IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Infrared spectroscopy investigation of fresh grapevine organs for clustering and classification.

Infrared spectroscopy investigation of fresh grapevine organs for clustering and classification.

Abstract

The spectral information acquired from fresh whole grapevine organs have yet to be fully explored. Infrared spectroscopy provides the means to rapidly measure fresh plant material and providing extensive information on the physical and chemical structure of samples. This study aimed to explore the spectra of fresh grapevine shoots, leaves, and berries throughout the growing season for clustering and classification. Sampling was performed across two vintages (2019-2020; 2020-2021) from November to March. Five locations, seven cultivars, and 17 commercial vineyards were included. Collection of whole shoots, including leaves and grape bunches, were performed on a monthly basis. The fresh grapevine organs were analysed using three spectroscopy methods within 24-36 hours of sampling. Mid-infrared (MIR) and near-infrared (NIR), making use of a solid probe (NIR-SP) and a rotating sphere (NIR-RS), were investigated. The raw spectra were firstly investigated using principal component analysis (PCA) followed by a more novel chemometric approach, unsupervised
self-organising maps (SOM). PCA as well as unsupervised SOM showed the most considerable grouping based on organ type. Additionally, the unsupervised SOM showed separation trends based on phenological stage. Investigation of the datasets per organ with SOM showed separation based on the phenological stage for berries and shoots, as well as shoots clustering based on lignification. Supervised SOM were examined for classification based on the observed clustering per organ type, phenological stage, and lignification. The accurate prediction of organ at 90.3% was possible for the NIR-SP dataset for 2019-2021. Overlapping of various phenological stages were seen for the grape berry datasets, but prediction improved to 85.6% for the NIR-RS 2019-2021 dataset when certain phenological
stages were grouped together. Accurate predictions of lignified and unlignified shoots were also seen for the NIR-SP 2019-2021 and NIR-RS 2020-2021 datasets at 74.4% and 89.9% respectively. The possibility of using spectral variable selection to improve the supervised SOM predictions were explored and promising results obtained for certain datasets. Following variable selection with OPLS-DA and S-plots, the prediction of shoots and leaves improved by 14% for the NIR-RS 2020-2021 dataset. The prediction of lignified and unlignified shoots improved considerably to 92.3% for the NIR-SP 2019-2021 dataset and 95.9% for the NIR-RS 2020-2021 dataset. This study showed the extensive information available in infrared spectra of fresh grapevine organs and how the information could be used to achieve important clustering and classifications objectives

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Van Wyngaard Elizma¹, Blancquaert Erna¹, Nieuwoudt Hélène¹and Aleixandre-Tudo Jose Luis1,²

¹South African Grape and Wine Research Institute (SAGWRI), Department of Viticulture and Oenology, Stellenbosch University, Stellenbosch, South Africa
²Instituto de Ingeniería de Alimentos para el Desarrollo (IIAD), Departamento de Tecnologia de Alimentos, Universidad Politécnica de Valencia, Valencia, Spain

Contact the author

Keywords

Spectroscopy, grapevine organs, clustering, classification

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Influence of toasting oak wood on ellagitannin structures

Ellagitannins (ETs) have been reported to be the main phenolic compounds found in oak wood. These compounds, belonging to the hydrolysable tannin class of polyphenols, are esters of hexahydroxydiphenic acid (HHDP) and a polyol, usually glucose or quinic acid. They own their name to their capacity to be hydrolysed and liberate ellagic acid and they have an impact on astringency and bitterness sensation, which is strongly dependant on their structure. The toasting phase is particularly crucial in barrels fabrication and influences wood composition.

Are my bubbles shrinking? A deeper look at oxygen desorption in wine

In the past decade, there has been an increasing amount of work dedicated to understanding micro-oxygenation in wine.

Development of a new lab-scale carbonation method for applications to sparkling wines

Carbon dioxide (CO2) is the gaseous species responsible for the sparkle in all sparkling wines, influencing their
visual appearance, aromas and mouthfeel.

Phenology and bioclimate of grapevine varieties in the tropical region of the São Francisco Valley, Brazil

La région de la Vallée du São Francisco, situe à 9º S, est en train d’augmenter la production des vins fins les dernières années. La région présente climat du type tropical semi-aride (climat viticole à variabilité intra-annuelle selon le Système CCM Géoviticole : “très chaud, à nuits chaudes et à sécheresse forte à sub-humide” en fonction

Non-linear unmixing as an innovative tool to detect vine diseases in UAVs, airborned and satellite images: preliminary results

Vine diseases have a strong impact on vineyards sustainability, which in turns leads to strong economic consequences. Among those diseases, Flavescence dorée spreads quickly and is incurable, which led in France to the setup of a mandatory pest control implying the systematic use of pesticides and the prospection and uprooting of every infected plants. Remote sensing could be a very powerful tool to optimize prospection as it allows to produce quickly accurate maps over large areas. Recent studies have shown that high spatial resolution (10cm/pixel) multispectral images acquired from UAVs allow to map Flavescence dorée in vineyards using leaves discolorations [e.g. Albetis et al., Remote Sensing, 2017].