IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Evaluation of mannoprotein formation by different yeast strains by enzymatic analysis of mannose and tribological estimation of astringency

Evaluation of mannoprotein formation by different yeast strains by enzymatic analysis of mannose and tribological estimation of astringency

Abstract

A positive role of mannoproteins on wine stability and red wine mouth sensations has been widely described. Commercial mannoproteins are available and some yeast strains are offered with a higher formation of mannoproteins. However, mannoprotein analysis is complex and its determination at cellar level is very limited. An adaptation of a relatively simple method of analysis of mannoproteins was developed, based on concentration of poly saccharides by membrane filtration, hydrolysis and enzymatic determination of mannose. The method was applied to the analysis of the mannoprotein content of wines fermented with different yeast strains deemed to produce high amounts of mannoproteins. Significant differences in mannoprotein concentration of red wines fermented with different strains was obtained. A tribological estimation of astringency also showed differences in the friction coefficient between wines. Sensory evaluation of wines using RATA (Rate all that Apply) with a panel of trained enologists showed significant differences only in some mouth parameters like dryness, grease, structure and bitter. Reasonable correlations between mannose concentration and friction coefficient were obtained only in wines coming from an earlier harvest. Correlations of mannose and friction coefficient with sensorial parameters were in general low except for dryness with friction coefficient in the early harvested wines. Even if significant, differences in mannoprotein concentration between strains were moderate, what can explain these results. Findings of this work propose an effect of mannoproteins on
sensory perception and opens the possibility to explore their effect on wine quality

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Bordeu Edmundo¹, Vidal Josefina¹, Vargas Sebastián², Zincker Jorge², Schober Doreen²and Brossard Natalia ¹

¹Department of Fruit Trees and Enology, Pontifical Catholic University of Chile, Santiago, Chile
²Center for Research and Innovation Concha y Toro (CII

Contact the author

Keywords

Mannoproteins, Yeast strains, RATA (Rate all that apply), Oral lubrication, Astringency

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Effect of supplementation with inactive yeast during alcoholic fermentation in base wine for sparkling

INTRODUCTION: Foam stability of sparkling wines is significantly favored by the presence of surface active agents such as proteins and polysaccharides [1]. For that reason, the renowned sparkling wines are aged after the second fermentation in contact with the lees for several months (even years). Thereby wines are enriched in these macromolecules due to yeast autolysis. Since this practice is slow and costly, winemakers are seeking for alternative procedures to increase their concentration in base wines. In that sense, the supplementation with inactive yeast during alcoholic fermentation has been proposed [2]. The aim of this study was to determine whether this new strategy is really useful for enriching base wines in macromolecules and for improving foam properties of the base wines.

The Shield4Grape project to improve the sustainability of European viticulture

Grapevine (vitis spp.) Is one of the major and most economically important fruit crops worldwide. Unlike other cropping systems, viticulture has ancient historical connections with the development of human culture and with the socio-cultural background of grape-growing areas. The vitis genus is characterised by high levels of genetic diversity, as result of natural genetic mutations, which are common in grapevines and further assisted by ongoing vegetative propagation.

Dynamic agrivoltaics, climate protection for grapevine driven by artificial intelligence

The year-on-year rise in temperatures and the increase in extreme weather events due to climate change are already having an impact on agriculture. Among the perennial fruit species, grapevine is already negatively impacted by these events through an acceleration of its phenology, more damage from late frosts or through an increase in the sugar level of the berries (and therefore the alcoholic degree of the wine) and a decrease of acidity, impacting the wine quality. Sun’Agri, in partnership with INRAE, Chambre d’agriculture du Vaucluse, Chambre d’agriculture des Pyrénées-Orientales and IFV, developed a protection system based on dynamic agrivoltaics to protect grapevine. It consists of photovoltaic solar panels positioned above the crop, high enough not to impede the passage of agricultural machinery, and tiltable from +/- 90° to adjust the level of shading on the vineyard. These smart louvers, driven by artificial intelligence (physical models & plant growth models), are steered according to the plant’s needs and provide real climate protection.

AGEING BOTTLED WINES SUBMERGED IN SEA: DOES IT IMPACT WINE COMPOSITION?

Aging wines is a common practice in oenology, which in recent years has undergone some innovations. Currently, we are witnessing the practice of aging bottled wine in depth, immersed in the sea or in reservoirs, for variable periods of time, but so far, little is known about the impact of aging in depth on the physicochemical properties, of wines.
The objective of this work was to evaluate the impact of this practice on the physicochemical characteristics, in particular to verify changes in the volatile composition of wines bottled and subsequently immersed in depth. A red wine from Cabernet Sauvignon was bottled and a set of bottles were submerged from July to February (2020), another set of bottles were submerged from February to September (2020) and another set was kept in the wine cellar. Bottles from each set were analyzed (in triplicate) in July 2021.

S. CEREVISIAE AND O. ŒNI BIOFILMS FOR CONTINUOUS ALCOHOLIC AND MALOLACTIC FERMENTATIONS IN WINEMAKING

Biofilms are sessile microbial communities whose lifestyle confers specific properties. They can be defined as a structured community of bacterial cells enclosed in a self-produced polymeric matrix and adherent to a surface and considered as a method of immobilisation. Immobilised microorganisms offer many advantages for industrial processes in the production of alcoholic beverages and specially increasing cell densities for a better management of fermentation rates.