IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Evaluation of mannoprotein formation by different yeast strains by enzymatic analysis of mannose and tribological estimation of astringency

Evaluation of mannoprotein formation by different yeast strains by enzymatic analysis of mannose and tribological estimation of astringency

Abstract

A positive role of mannoproteins on wine stability and red wine mouth sensations has been widely described. Commercial mannoproteins are available and some yeast strains are offered with a higher formation of mannoproteins. However, mannoprotein analysis is complex and its determination at cellar level is very limited. An adaptation of a relatively simple method of analysis of mannoproteins was developed, based on concentration of poly saccharides by membrane filtration, hydrolysis and enzymatic determination of mannose. The method was applied to the analysis of the mannoprotein content of wines fermented with different yeast strains deemed to produce high amounts of mannoproteins. Significant differences in mannoprotein concentration of red wines fermented with different strains was obtained. A tribological estimation of astringency also showed differences in the friction coefficient between wines. Sensory evaluation of wines using RATA (Rate all that Apply) with a panel of trained enologists showed significant differences only in some mouth parameters like dryness, grease, structure and bitter. Reasonable correlations between mannose concentration and friction coefficient were obtained only in wines coming from an earlier harvest. Correlations of mannose and friction coefficient with sensorial parameters were in general low except for dryness with friction coefficient in the early harvested wines. Even if significant, differences in mannoprotein concentration between strains were moderate, what can explain these results. Findings of this work propose an effect of mannoproteins on
sensory perception and opens the possibility to explore their effect on wine quality

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Bordeu Edmundo¹, Vidal Josefina¹, Vargas Sebastián², Zincker Jorge², Schober Doreen²and Brossard Natalia ¹

¹Department of Fruit Trees and Enology, Pontifical Catholic University of Chile, Santiago, Chile
²Center for Research and Innovation Concha y Toro (CII

Contact the author

Keywords

Mannoproteins, Yeast strains, RATA (Rate all that apply), Oral lubrication, Astringency

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Swiss terroirs studies

A multidisciplinary approach aiming at studying the grape-growing areas also referred as “Terroir” was initiated a few years ago in Switzerland.

A novel approach for the identification of new biomarkers of wine consumption in human urine using untargeted metabolomics

Wine is one of the most representative components of Mediterranean diet. Moderate wine intake together with food, has been positively correlated with reduced risk of many chronic diseases. This beneficial effect seems to be ascribed to elevated polyphenolic content of wine [1]. Traditional approaches for the identification of wine biomarkers consumption include targeted metabolomics that focuses on the quantification of well-defined metabolites, losing a valuable information about a massive number of compounds. On the other hand, untargeted metabolomics can disclose a large quantity of signals corresponding to potential biomarkers in a single analysis with high sensitivity and resolution.

CHANGES IN METABOLIC FLUXES UNDER LOW PH GROWTH CONDITIONS: CAN THE SLOWDOWN OF CITRATE CONSUMPTION IMPROVE OENOCOCCUS OENI ACID-TOLERANCE?

Oenococcus oeni is the main Lactic Acid Bacteria responsible for malolactic fermentation, converting malic acid into lactic acid and carbon dioxide in wines. Following the alcoholic fermentation, this second fermentation ensures a deacidification and remains essential for the release of aromatic notes and the improvement of microbial stability in many wines. Nevertheless, wine is a harsh environment for microbial growth, especially because of its low pH (between 2.9 and 3.6 depending on the type of wine) and nutrient deficiency. In order to maintain homeostasis and ensure viability, O. oeni possesses different cellular mechanisms including organic acid metabolisms which represent also the major pathway to synthetize energy in wine.

An analytical framework to site-specifically study climate influence on grapevine involving the functional and Bayesian exploration of farm data time series synchronized using an eGDD thermal index

Climate influence on grapevine physiology is prevalent and this influence is only expected to increase with climate change. Although governed by a general determinism, climate influence on grapevine physiology may present variations according to the terroir. In addition, these site-specific differences are likely to be enhanced when climate influence is studied using farm data. Indeed, farm data integrate additional sources of variation such as a varying representativity of the conditions actually experienced in the field. Nevertheless, there is a real challenge in valuing farm data to enable grape growers to understand their own terroir and consequently adapt their practices to the local conditions. In such a context, this article proposes a framework to site-specifically study climate influence on grapevine physiology using farm data. It focuses on improving the analysis of time series of weather data. The analytical framework includes the synchronization of time series using site-specific thermal indices computed with an original method called Extended Growing Degree Days (eGDD). Synchronized time series are then analyzed using a Bayesian functional Linear regression with Sparse Steps functions (BLiSS) in order to detect site-specific periods of strong climate influence on yield development. The article focuses on temperature and rain influence on grape yield development as a case study. It uses data from three commercial vineyards respectively situated in the Bordeaux region (France), California (USA) and Israel. For all vineyards, common periods of climate influence on yield development were found. They corresponded to already known periods, for example around veraison of the year before harvest. However, the periods differed in their precise timing (e.g. before, around or after veraison), duration and correlation direction with yield. Other periods were found for only one or two vineyards and/or were not referred to in literature, for example during the winter before harvest.

Effect of different packaging materials on table grape quality preservation during cold storage

During cold storage, grapes undergo changes that affect their visual, mechanical, and organoleptic properties, potentially impacting quality and negatively influencing consumer acceptance. Key parameters include uniform color, crunchiness, and flesh consistency. We evaluated the influence of two distinct packaging methods on the chromatic characteristics, hardness, and pedicel detachment resistance of fourteen new seedless white and red grape varieties during cold storage. These factors are crucial for maintaining the quality of the product and extending its shelf-life. The novel grape varieties were obtained through a breeding program at CREA-VE of Turi, Southern Italy.