IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Evaluation of mannoprotein formation by different yeast strains by enzymatic analysis of mannose and tribological estimation of astringency

Evaluation of mannoprotein formation by different yeast strains by enzymatic analysis of mannose and tribological estimation of astringency

Abstract

A positive role of mannoproteins on wine stability and red wine mouth sensations has been widely described. Commercial mannoproteins are available and some yeast strains are offered with a higher formation of mannoproteins. However, mannoprotein analysis is complex and its determination at cellar level is very limited. An adaptation of a relatively simple method of analysis of mannoproteins was developed, based on concentration of poly saccharides by membrane filtration, hydrolysis and enzymatic determination of mannose. The method was applied to the analysis of the mannoprotein content of wines fermented with different yeast strains deemed to produce high amounts of mannoproteins. Significant differences in mannoprotein concentration of red wines fermented with different strains was obtained. A tribological estimation of astringency also showed differences in the friction coefficient between wines. Sensory evaluation of wines using RATA (Rate all that Apply) with a panel of trained enologists showed significant differences only in some mouth parameters like dryness, grease, structure and bitter. Reasonable correlations between mannose concentration and friction coefficient were obtained only in wines coming from an earlier harvest. Correlations of mannose and friction coefficient with sensorial parameters were in general low except for dryness with friction coefficient in the early harvested wines. Even if significant, differences in mannoprotein concentration between strains were moderate, what can explain these results. Findings of this work propose an effect of mannoproteins on
sensory perception and opens the possibility to explore their effect on wine quality

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Bordeu Edmundo¹, Vidal Josefina¹, Vargas Sebastián², Zincker Jorge², Schober Doreen²and Brossard Natalia ¹

¹Department of Fruit Trees and Enology, Pontifical Catholic University of Chile, Santiago, Chile
²Center for Research and Innovation Concha y Toro (CII

Contact the author

Keywords

Mannoproteins, Yeast strains, RATA (Rate all that apply), Oral lubrication, Astringency

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

The history of the first demarkated wine region of the world – the Tokaj wine region

The optimal climatic conditions of the region were proved in 1867, when a leaf-print of Vitis tokaiensis was found in a stone from miocen age (13 million years ago).

Enhancing plant defense: carbon dots for efficient spray-induced gene silencing 

Ectopic RNA application for plant defense faces challenges in tree crops, including size, diffusion, and stability of active compounds such as ribonucleoproteins and nucleic acids. While existing strategies involve expressing dsRNA in transgenic plants targeting pathogens, our research strives to develop a transient RNAi system based on Spray-Induced Gene Silencing (SIGS). This approach aims to circumvent legal barriers and public concerns associated with genetically modified organisms (GMOs). Our strategy integrates SIGS with branched polyethyleneimine-functionalized Carbon Dots (bPEI-CDs) as nanocarriers, effectively addressing unique delivery challenges in plant defense as RNA stability and uptake enhancement

An internet-based gis application for vineyard site assessment in the U.S. and matching grape variety to site

Vineyard site selection and determination of adapted grape varieties for a site are the most fundamental factors contributing to vineyard success, but can be challenging to ascertain

Pesticide removal in wine with a physical treatment by molecular sieving

All along the winemaking process, conditioning and aging, wine is susceptible to be contaminated by different molecules. Contaminations can have various origins, related to wine microorganisms or as a result of an exogenous contamination. The aforementioned contamination of the wine can be caused by the migration of molecules from the materials in contact with the wine or by a contamination from exogenous molecules present in the air. Regardless of the source of the contamination, mainly two types of consequences can be observed.

Effects of grapevine mycorrhizal association on fine root dynamics depend on rootstock genotype

Context and Purpose of the study. Arbuscular mycorrhizal fungi (AMF) symbiosis with grapevines is a key component of vineyard ecosystems.