IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Evaluation of mannoprotein formation by different yeast strains by enzymatic analysis of mannose and tribological estimation of astringency

Evaluation of mannoprotein formation by different yeast strains by enzymatic analysis of mannose and tribological estimation of astringency

Abstract

A positive role of mannoproteins on wine stability and red wine mouth sensations has been widely described. Commercial mannoproteins are available and some yeast strains are offered with a higher formation of mannoproteins. However, mannoprotein analysis is complex and its determination at cellar level is very limited. An adaptation of a relatively simple method of analysis of mannoproteins was developed, based on concentration of poly saccharides by membrane filtration, hydrolysis and enzymatic determination of mannose. The method was applied to the analysis of the mannoprotein content of wines fermented with different yeast strains deemed to produce high amounts of mannoproteins. Significant differences in mannoprotein concentration of red wines fermented with different strains was obtained. A tribological estimation of astringency also showed differences in the friction coefficient between wines. Sensory evaluation of wines using RATA (Rate all that Apply) with a panel of trained enologists showed significant differences only in some mouth parameters like dryness, grease, structure and bitter. Reasonable correlations between mannose concentration and friction coefficient were obtained only in wines coming from an earlier harvest. Correlations of mannose and friction coefficient with sensorial parameters were in general low except for dryness with friction coefficient in the early harvested wines. Even if significant, differences in mannoprotein concentration between strains were moderate, what can explain these results. Findings of this work propose an effect of mannoproteins on
sensory perception and opens the possibility to explore their effect on wine quality

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Bordeu Edmundo¹, Vidal Josefina¹, Vargas Sebastián², Zincker Jorge², Schober Doreen²and Brossard Natalia ¹

¹Department of Fruit Trees and Enology, Pontifical Catholic University of Chile, Santiago, Chile
²Center for Research and Innovation Concha y Toro (CII

Contact the author

Keywords

Mannoproteins, Yeast strains, RATA (Rate all that apply), Oral lubrication, Astringency

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Grouping Vitis vinifera grapevine varieties based on their aromatic composition

Climate change is likely to impact wine typicity across the globe, raising concerns in wine regions historically renowned for the quality of their terroir1. Amongst several changes in viticultural practices, replacing some of the planting material (i.e. clones, rootstocks and cultivars) is thought to be one of the most promising potential levers to be used for adapting to climate change. But the change of cultivars also involves the issue of protecting the region’s wine typicity. In Bordeaux (France), extensive research has been conducted on identifying meridional varieties that could be good candidates to help guard against the effects of climate change2 while less research has been done concerning their impacts on Bordeaux wine typicity.

Integration of the AOC and terroir concepts by future professionals of the international wine sector

A survey has been conducted on 32 students and 25 former students of 28 nationalities of an international master course training executives of the international Wine sector.

Characterization of commercial enological tannins and its effect on human saliva diffusion

Commercial oenological tannins (TECs) are widely used in the wine industry. TECs are rich in condensed tannins, hydrolyzable tannins or a mixture of both. Wine grapes are a important source of proanthocyanidins or condensed tannins while oak wood possess a high concentration of hydrolyzable tannins (Obreque-Slier et al., 2009). TECs contribute with the antioxidant capacity of wine, catalyze oxide-reduction reactions and participate in the removal of sulfur compounds and metals.

Evolution of several biochemical compounds during the development of Merlot wine in the vinegrowing “Terroir” of Valea Călugăreasa

The qualitative and quantitative distribution of the phenolic compounds in red wines depends on cultivars features, on grapes maturation state, on grapes processing technology including must obtention, as well as on maceration-fermentation method (Margheri, 1981). The last two factors are responsible for the different phenolic composition of the wines produced from the same cultivar.

Evaluation of grape and wine quality according to harvest date, in a tropical region in Northeast Brazil

The Northeast region of Brazil is characterized by a semi-arid climate, has produced tropical wines since twenty years ago. The region is located at 09º 09’ South, 40º 22’ West, 365.5 m