IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Evaluation of mannoprotein formation by different yeast strains by enzymatic analysis of mannose and tribological estimation of astringency

Evaluation of mannoprotein formation by different yeast strains by enzymatic analysis of mannose and tribological estimation of astringency

Abstract

A positive role of mannoproteins on wine stability and red wine mouth sensations has been widely described. Commercial mannoproteins are available and some yeast strains are offered with a higher formation of mannoproteins. However, mannoprotein analysis is complex and its determination at cellar level is very limited. An adaptation of a relatively simple method of analysis of mannoproteins was developed, based on concentration of poly saccharides by membrane filtration, hydrolysis and enzymatic determination of mannose. The method was applied to the analysis of the mannoprotein content of wines fermented with different yeast strains deemed to produce high amounts of mannoproteins. Significant differences in mannoprotein concentration of red wines fermented with different strains was obtained. A tribological estimation of astringency also showed differences in the friction coefficient between wines. Sensory evaluation of wines using RATA (Rate all that Apply) with a panel of trained enologists showed significant differences only in some mouth parameters like dryness, grease, structure and bitter. Reasonable correlations between mannose concentration and friction coefficient were obtained only in wines coming from an earlier harvest. Correlations of mannose and friction coefficient with sensorial parameters were in general low except for dryness with friction coefficient in the early harvested wines. Even if significant, differences in mannoprotein concentration between strains were moderate, what can explain these results. Findings of this work propose an effect of mannoproteins on
sensory perception and opens the possibility to explore their effect on wine quality

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Bordeu Edmundo¹, Vidal Josefina¹, Vargas Sebastián², Zincker Jorge², Schober Doreen²and Brossard Natalia ¹

¹Department of Fruit Trees and Enology, Pontifical Catholic University of Chile, Santiago, Chile
²Center for Research and Innovation Concha y Toro (CII

Contact the author

Keywords

Mannoproteins, Yeast strains, RATA (Rate all that apply), Oral lubrication, Astringency

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Reasoning a Terroir policy on the basis of the prospective study of the French wine sector

The prospective study of the French wine sector (Sebillotte et al., 2004) has identified “groups of micro-scenarios” at the end of the analysis of the characteristics of this wine sector.

Effect of must temperature and aspergillopepsin-I supplementation on PR-protein derived peptides

Protein instability in wines is challenging, and despite many efforts to find satisfactory alternatives to bentonite, both in terms of stability and quality, the solutions are limited in the wine industry.

Influence of processing parameters on aroma profile of conventional and ecological Cabernet-Sauvignon red wine during concentration by reverse osmosis

Wine aroma represents one of the most important quality parameter and it is influenced by various factors (viticulture and vinification techniques, climate or storage conditions etc.). Wines produced from conventionally and ecologically grown grapes of same variety have different chemical composition and aroma profile [1]. Aroma profile of wine can be also influenced by additional treatment of wine, such as concentration of wine by reverse osmosis (RO). Reverse osmosis represents a pressure-driven membrane separation technique that separates the initial wine on the retentate or concentrate that is retained on the membrane, and permeate that passes through it [2]. Wine permeate usually containes water, ethanol, acetic acid and several low molecular weight compounds that can pass through the membrane. This property enables the use of reverse osmosis membranes for wine concentration, partial dealcoholization, acetic acid or aroma correction [3,4].

Bio-modulating wine acidity: The role of non-Saccharomyces yeasts

In this video recording of the IVES science meeting 2021, Alice Maria Correia Vilela (University of Trás-os-Montes and Alto Douro, Vila Real, Portugal) speaks about bio-modulating wine acidity: the role of non-Saccharomyces yeasts. This presentation is based on an original article accessible for free on IVES Technical Reviews.

DEVELOPMENT OF BIOPROSPECTING TOOLS FOR OENOLOGICAL APPLICATIONS

Wine production is a complex biochemical process that involves a heterogeneous microbiota consisting of different microorganisms such as yeasts, bacteria, and filamentous fungi. Among these microorganisms, yeasts play a predominant role in the chemistry of wine, as they actively participate in alcoholic fermentation, a biochemical process that transforms the sugars in grapes into ethanol and carbon dioxide while producing additional by-products. The quality of the final product is greatly influenced by the microbiota present in the grape berry, and the demand for indigenous yeast starters adapted to specific grape must and reflecting the biodiversity of a particular region is increasing. This supports the concept that indigenous yeast strains can be associated with a “terroir”.