IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Application of grape pomace and stem extracts on Vitis vinifera L. cv. Monastrell: Increased stilbene content of grapes and wines

Application of grape pomace and stem extracts on Vitis vinifera L. cv. Monastrell: Increased stilbene content of grapes and wines

Abstract

Pomace and grape stems are the main solid organic waste from winery industries, resulting from the pressing and/or fermentation processes it is generated in large amounts in many parts of the world, and disposed of in open areas causing environmental and economic problems.1,2 Therefore, it is necessary to look for alternatives to revalue these bioproducts, making the winemaking process a more sustainable activity. Therefore, this work aims to determine whether grape pomace extracts can be used as elicitors to increase the biosynthesis of healthy compounds in wine grapes.The experiment was carried out in 2021. Two polyphenolic extracts were obtained: one from pomace and the other from grape stems. Subsequently, the extracts were sprayed on Vitis vinifera L. cv Monastrell at the beginning of veraison (1st application) and seven days later (2nd application). When grapes reached technological maturity, they were harvested and transported in boxes to the winery for physicochemical analysis and vinification. Wines were analyzed at the end of alcoholic fermentation.The results indicated a significant increase in the concentration of grape stilbenes, especially by treatment with pomace extracts. The following stilbenes were increased: T-piceid, piceatanol, C-piceid, T-resveratrol and viniferins. The wines produced also showed a higher concentration of stilbenes compared to the wines from control grapes; mainly T-resveratrol and viniferins were released into the wine.In this sense, stilbenes are of particular importance in plants as they are synthesized under biotic or abiotic stress, giving the plant greater resistance to fungal attack.3 On the other hand, resveratrol has been extensively studied for its importance in health, as it is attributed with antioxidant, anticarcinogenic, neuroprotective and cardioprotective properties.4 Therefore, these results show that the use of pomace and grape stem extracts are a very interesting alternative since they would allow: revaluing the winery’s bioproducts, reducing the use of synthetic pesticides and increasing the functional value of grapes and wines.

References

1 Beres C, Costa GNS, Cabezudo I, Silva-James NK da, Teles ASC, Cruz APG, Mellinger-Silva C, Tonon R V, Cabral LMC, and Freitas SP. Towards integral utilization of grape pomace from winemaking process: A review. Waste Manag. p. 581–594 2017.
2 Christ KL and Burritt RL. Critical environmental concerns in wine production: An integrative review. J. Clean. Prod. Elsevier; p. 232–242 2013.
3 Bavaresco L, Fregoni C, Zeller De Macedo Basto Gonçalves MI Van, and Vezzulli S. Physiology & molecular biology of grapevine stilbenes: An update. Grapevine Molecular Physiology and Biotechnology: Second Edition Springer Netherlands; p. 341–364 2009.
4 Ruiz-García Y. Elicitores: una herramienta para incrementar el color y el aroma de uvas y vinos. [Murcia-Spain]: (Tesis Doctoral). Universidad de Murcia. Murcia-España; 2014.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Poster

Authors

Paladines-Quezada Diego F.1, Giménez-Banón1, Moreno-Olivares Juan D.1, Gómez-Martínez José C.1, Cebrián-Pérez Ana1, Fernández-Fernández José I.1, Bleda-Sánchez Juan A.1 and Gil-Munoz Rocío

¹Instituto Murciano de Investigación y Desarrollo Agrario y Medioambiental (IMIDA)

Contact the author

Keywords

bioproducts, revalue, sustainable, resveratrol, health.

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

The impact of leaf canopy management on eco-physiology, wood chemical properties and microbial communities in root, trunk and cordon of Riesling grapevines (Vitis vinifera L.)

In the last decades, climate change required already adaptation of vineyard management. Increase in temperature and unexpected weather events cause changes in all phenological stages requiring new management tools. For example, defoliation can be a useful tool to reduce the sugar content in the berries creating differences in the wine profiles. In a ten-year field experiment using Riesling (Vitis vinifera L, planted 1986, Geisenheim, Germany), various mechanical defoliation strategies and different intensities were trialed until 2016 before the vineyard was uprooted. Wood was sampled from the plant compartments root, trunk, cordon and shoot for analyses of physicochemical properties (e.g. lignin and element content, pH, diameter), nonstructural carbohydrates and the microbial communities. The aim of the study was to investigate the influence of reduced canopy leaf area on the sink-source allocation into different compartments and potential changes of the fungal and prokaryotic wood-inhabiting community using a metabarcoding approach. Severe summer pruning (SSP) of the canopy and mechanical defoliation (MDC) above the bunch zone decreased the leaf area by 50% compared to control (C). SSP reduced the photosynthetic capacity, which resulted in an altered source-sink allocation and carbohydrate storage. With lower leaf area, less carbohydrates are allocated. This for example resulted in a decreased trunk diameter. Further, it affected the composition of the grapevine wood microbiota. SSP and MDC management changed significantly the prokaryotic community composition in wood of the root samples, but had no effect in other compartments. In general, this study found strong compartment and less management effects of the microbial community composition and associated physicochemical properties. The highest microbial diversities were identified in the wood of the trunk, and several species were recorded the first time in grapevine.

Legacy of land-cover changes on soil erosion and microbiology in Burgundian vineyards

Soils in vineyards are recognized as complex agrosystems whose characteristics reflect complex interactions between natural factors (lithology, climate, slope, biodiversity) and human activities. To date, most of the unknown lies in an incomplete understanding of soil ecosystems, and specifically in the microbial biodiversity even though soil microbiota is involved in many key functions, such as nutrient cycling and carbon sequestration. Soil biological properties are indicative of soil quality. Therefore, understanding how soil communities are related to soil ecosystem functioning is becoming an essential issue for soil strategy conservation. Here, we propose to assess the importance of land-cover history on the present-day microbiological and physico-chemical properties. The studied area was selected in the Burgundian vineyards (Pernand-Vergelesses, Burgundy, France) where land occupation has been reconstructed over the last 40 years. Soil samples were collected in five areas reflecting various land cover history (forest, vineyards, shifting from forest to vineyards). For each area, physico-chemical parameters (pH, C, N, P, grain size) were measured and DNA was extracted to characterize the abundance and diversity of microbial communities. The obtained results show significant differences in the five areas suggesting that present-day microbial molecular biomass and bacterial taxonomic is partly inherited from past land occupation. Over longer period of time, such study of land-uses legacies may help to better assess ecosystem recovery and the impact of management practices for a better soil quality and vineyards sustainability.

Australia’s Wine Future: A Climate Atlas

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" text_orientation="center" custom_margin="65px||18px||false|false"...

Seasonal vine nutrient dynamics and distribution of shiraz grapevines

The nutrient reserves in the grapevine perennial structure perform a critical role in supplying the grapevine with nutrients

New acylated flavonols identified in the grape skin of Vitis vinifera cv. Tannat and their wines

Flavonols are a class of flavonoid compounds derived from plant secondary metabolism. There they play different roles like antioxidants, internal regulators and UV screenings. In red wines, flavonols have increasingly received consideration by part of scientific and winemakers according their properties began to arise known. Among these stand out wine colour stabilization and their value as bioactive compounds. In this work the complete series of the acetylated and p-coumaroylated derivatives of the 3-O-glycosides of methoxylated flavonols, namely isorhamnetin, laricitrin and syringetin, have been identified in grapes and their respective wines from Vitis vinifera cv. Tannat.