IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 The effect of wine matrix on the initial release of volatile compounds and their evolution in the headspace

The effect of wine matrix on the initial release of volatile compounds and their evolution in the headspace

Abstract

There is evidence in the literature that non-volatile wine matrix can modify the release and therefore the perception of the compounds involved in wine aroma [1-3]. The aim of the present study is to make an estimation of the nature of these changes by using a standard volatile composition added to different real wine matrices and then analyze the headspace above them.The analytical methodology is based on a previously developed DHS-TD-GC-MS method [4]. This analytical method provides a snapshot of the contents in wine vapors and allows a better understanding of the headspace profile changes. To study the influence of the wine matrix on the release of volatile compounds, the non-volatile matrix from six different wines was isolated and all volatile compounds removed. The non-volatile matrices were used to reconstitute the six original wines but this time the volatile composition was a standard aroma solution (15 volatile compounds of different chemical families) and the same alcoholic content. The headspaces of the reconstituted wines and a model wine (12% vol. ethanol, pH 3.5) were analyzed and compared at two different moments: just after wine pouring (t=0 min) and after 10 min with glass shaking (t=10 min). The analyses were triplicated for each model wine. Also, free and total sulfur dioxide, total polyphenol index, total acidity, pH, dry mass and contents on copper, iron and zinc were determined for each wine matrix.The data collected was studied according to the time spent after wine pouring, as this factor substantially modifies the headspace of most volatile compounds. The results of a one-way ANOVA to assess the influence of the wine matrix on the initial headspace composition showed significant differences for all compounds except ethyl decanoate. Dimethyl sulfide presented marked differences among wines matrices and a significant linear anti-correlation with the copper content of the matrices. Esters showed a similar trend in the release across wine matrices, although one wine was consistently releasing lower contents of ethyl esters. Butyric and hexanoic acids were the compounds with more marked differences in release, although other compounds like β-damascenone also displayed significant differences according to the wine matrix. The variation on the release of more polar and heavier compounds, like linalool, 4-ethylphenol or vanillin in the studied matrices was more similar to that of the model wine. Only in the matrix of a young red wine a salting-out effect was detected. The data obtained in this work proves that the same volatile composition in the liquid phase of very dissimilar non-volatile wine matrices produces a headspace profile above the wines that can be significantly different and, therefore, can undoubtedly influence the perception of wine aroma.

References

[1] D.-M. Jung, S.E. Ebeler, Headspace Solid-Phase Microextraction Method for the Study of the Volatility of Selected Flavor Compounds, (2003) 6.
[2] M.-P. Sáenz-Navajas, E. Campo, L. Culleré, P. Fernández-Zurbano, D. Valentin, V. Ferreira, Effects of the Nonvolatile Matrix on the Aroma Perception of Wine, J. Agric. Food Chem. 58 (2010) 5574–5585. https://doi.org/10.1021/jf904377p.
[3] J.J. Rodríguez-Bencomo, C. Muñoz-González, I. Andújar-Ortiz, P.J. Martín-Álvarez, M.V. Moreno-Arribas, M.Á. Pozo-Bayón, Assessment of the effect of the non-volatile wine matrix on the volatility of typical wine aroma compounds by headspace solid phase microextraction/gas chromatography analysis, J. Sci. Food Agric. 91 (2011) 2484–2494. https://doi.org/10.1002/jsfa.4494.
[4] Y. Wen, R. Lopez, V. Ferreira, An automated gas chromatographic-mass spectrometric method for the quantitative analysis of the odor-active molecules present in the vapors emanated from wine, J. Chromatogr. A. 1534 (2018) 130–138. https://doi.org/10.1016/j.chroma.2017.12.064.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Poster

Authors

Lopez Ricardo¹, Wen Yan¹and Ferreira Vicente¹

¹Laboratory for Aroma Analysis and Enology, Instituto Agroalimentario de Aragón (IA2), Department of Analytical Chemistry, Faculty of Sciences, Universidad de Zaragoza

Contact the author

Keywords

headspace, aroma release, flavor-matrix interactions, wine, GC-MS

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

A 4D high resolution vineyard soil assessment for soil-hydrological interpretation in combination with automated data analysis and visualization to manage site-specific grape and wine quality

A Visual Information eNvironment for Effective agricultural management and Sustainability (VINES) is under development, which can provide significant competitive advantages to winegrowers by sustaining their appellation-specific grape and wine qualities and yields while measurably conserving water resources.

Revealing the Barossa zone sub-divisions through sensory and chemical analysis of Shiraz wine

The Barossa zone is arguably one of the most well-recognised wine producing regions in Australia and internationally; known mainly for the production of its distinct Shiraz wines. However, within the broad Barossa geographical delimitation, a variation in terroir can be perceived and is expressed as sensorial and chemical profile differences between wines. This study aimed to explore the sub-division classification across the Barossa region using chemical and sensory measurements. Shiraz grapes from 4 different vintages and different vineyards across the Barossa (2018, n = 69; 2019, n = 72; 2020, n = 79; 2021, n = 64) were harvested and made using a standardised small lot winemaking procedure. The analysis involved a sensory descriptive analysis with a highly trained panel and chemical measurement including basic chemistry (e.g. pH, TA, alcohol content, total SO2), phenolic composition, volatile compounds, metals, proline, and polysaccharides. The datasets were combined and analysed through an unsupervised, clustering analysis. Firstly, each vintage was considered separately to investigate any vintage to vintage variation. The datasets were then combined and analysed as a whole. The number of sub-divisions based on the measurements were identified and characterised with their sensory and chemical profile and some consistencies were seen between the vintages. Preliminary analysis of the sensory results showed that in most vintages, two major groups could be identified characterised with one group showing a fruit-forward profile and another displaying savoury and cooked vegetables characters. The exploration of distinct profiles arising from the Barossa wine producing region will provide producers with valuable information about the regional potential of their wine assisting with tools to increase their target market and reputation. This study will also provide a robust and comprehensive basis to determine the distinctive terroir characteristics which exist within the Barossa wine producing region.

Exploring the impact of NPR3 gene silencing on the interaction between grapevine and mycorrhizal fungi through genome editing

One of the main plant defence mechanisms is the Systemic Acquired Resistance (SAR) mediated by Salicylic Acid (SA). This is a heightened and broad-spectrum immune response initiated by the exposure to pathogens, inducing resistance not only in the infected site, but also throughout the entire plant. It was demonstrated that plant immune system can be regulated by two classes of SA receptors: NONEXPRESSOR OF PR GENES 1 (NPR1) and NPR1-LIKE PROTEIN 3 and 4 (NPR3/NPR4). While NPR1 is required for SA-induction followed by the expression of pathogenesis-related (PR) protein and resistance against pathogens, NPR3/NPR4 serve as transcriptional co-repressors of SA-responsive genes.

Starmerella bacillaris grape treatment as a sustainable approach to manage Botrytis cinerea during the withering process

Growing concerns over the environmental and health risks posed by chemical pesticides have highlighted the need to reduce their use in the agri-food sector.

Climate change impacts on grapevine leafroll disease and its transmission by mealybugs

Climate change impacts crop plants, plant pathogens, and their insect vectors and hence adds abiotic stress to the triangle of plant-virus-vector interactions.