IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 The effect of wine matrix on the initial release of volatile compounds and their evolution in the headspace

The effect of wine matrix on the initial release of volatile compounds and their evolution in the headspace

Abstract

There is evidence in the literature that non-volatile wine matrix can modify the release and therefore the perception of the compounds involved in wine aroma [1-3]. The aim of the present study is to make an estimation of the nature of these changes by using a standard volatile composition added to different real wine matrices and then analyze the headspace above them.The analytical methodology is based on a previously developed DHS-TD-GC-MS method [4]. This analytical method provides a snapshot of the contents in wine vapors and allows a better understanding of the headspace profile changes. To study the influence of the wine matrix on the release of volatile compounds, the non-volatile matrix from six different wines was isolated and all volatile compounds removed. The non-volatile matrices were used to reconstitute the six original wines but this time the volatile composition was a standard aroma solution (15 volatile compounds of different chemical families) and the same alcoholic content. The headspaces of the reconstituted wines and a model wine (12% vol. ethanol, pH 3.5) were analyzed and compared at two different moments: just after wine pouring (t=0 min) and after 10 min with glass shaking (t=10 min). The analyses were triplicated for each model wine. Also, free and total sulfur dioxide, total polyphenol index, total acidity, pH, dry mass and contents on copper, iron and zinc were determined for each wine matrix.The data collected was studied according to the time spent after wine pouring, as this factor substantially modifies the headspace of most volatile compounds. The results of a one-way ANOVA to assess the influence of the wine matrix on the initial headspace composition showed significant differences for all compounds except ethyl decanoate. Dimethyl sulfide presented marked differences among wines matrices and a significant linear anti-correlation with the copper content of the matrices. Esters showed a similar trend in the release across wine matrices, although one wine was consistently releasing lower contents of ethyl esters. Butyric and hexanoic acids were the compounds with more marked differences in release, although other compounds like β-damascenone also displayed significant differences according to the wine matrix. The variation on the release of more polar and heavier compounds, like linalool, 4-ethylphenol or vanillin in the studied matrices was more similar to that of the model wine. Only in the matrix of a young red wine a salting-out effect was detected. The data obtained in this work proves that the same volatile composition in the liquid phase of very dissimilar non-volatile wine matrices produces a headspace profile above the wines that can be significantly different and, therefore, can undoubtedly influence the perception of wine aroma.

References

[1] D.-M. Jung, S.E. Ebeler, Headspace Solid-Phase Microextraction Method for the Study of the Volatility of Selected Flavor Compounds, (2003) 6.
[2] M.-P. Sáenz-Navajas, E. Campo, L. Culleré, P. Fernández-Zurbano, D. Valentin, V. Ferreira, Effects of the Nonvolatile Matrix on the Aroma Perception of Wine, J. Agric. Food Chem. 58 (2010) 5574–5585. https://doi.org/10.1021/jf904377p.
[3] J.J. Rodríguez-Bencomo, C. Muñoz-González, I. Andújar-Ortiz, P.J. Martín-Álvarez, M.V. Moreno-Arribas, M.Á. Pozo-Bayón, Assessment of the effect of the non-volatile wine matrix on the volatility of typical wine aroma compounds by headspace solid phase microextraction/gas chromatography analysis, J. Sci. Food Agric. 91 (2011) 2484–2494. https://doi.org/10.1002/jsfa.4494.
[4] Y. Wen, R. Lopez, V. Ferreira, An automated gas chromatographic-mass spectrometric method for the quantitative analysis of the odor-active molecules present in the vapors emanated from wine, J. Chromatogr. A. 1534 (2018) 130–138. https://doi.org/10.1016/j.chroma.2017.12.064.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Poster

Authors

Lopez Ricardo¹, Wen Yan¹and Ferreira Vicente¹

¹Laboratory for Aroma Analysis and Enology, Instituto Agroalimentario de Aragón (IA2), Department of Analytical Chemistry, Faculty of Sciences, Universidad de Zaragoza

Contact the author

Keywords

headspace, aroma release, flavor-matrix interactions, wine, GC-MS

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Aroma characterization of mold resistant base wines for sparkling wine produced in a warm-temperate area at two different altitudes

In a recent context where consumers pay an increasing attention to sustainability and eco-friendly aspects in the decision-making process, the use of the resistant varieties in the wine sector have returned to the attention. In this context, the use of mould-resistant grape varieties would be an opportunity for sparkling wine producers as it can reduced the pesticide utilization in grape management and hence production costs.
However, the use of the resistant varieties to produce the base wine may be strongly influenced due to its requirements for a particular balance between sugars and acidity to ensure the quality of the final product. In addition, the aromatic profile of base wine plays a crucial role in the perception of the quality of the sparkling wine.

Characterization of the DOC wine “Colli Piacentini Gutturnio” obtained in three traditional areas

The poster presents the results of the 3rd year of activity of the project “Characterization of the wine productions of the italian regions. The DOC wine Colli Piacentini Gutturnio”.

CHEMICAL DRIVERS OF POSITIVE REDUCTION IN NEW ZEALAND CHARDONNAY WINES

According to winemakers, wine experts and sommeliers, aromas of wet stone, mineral, struck match and flint in white wines styles, such as those produced from Vitis vinifera L. cv. Chardonnay, are considered to be hallmarks of positive reduction.1,2 In recent years, the production of Chardonnay styles defined by aroma characteristics related to positive reduction has become more desirable among wine experts and consumers. The chemical basis of positive reduction is thought to originate from the concentration of specific volatile sulfur compounds (VSCs), including methanethiol (MeSH) imparting mineral and chalk notes,3 and benzenemethanethiol (BMT) responsible for struck match and flint.1,4

Correlations between N,S,O-heterocycle levels and age of Champagne base wines

Champagne regulation allows winegrowers to stock small amounts of still wines in order to compensate vintages’ quality shifts mainly due to climate variations. According to their technical requirements and house style some Champagne producers (commonly named “Champagne houses”) use these stored wines in the blend in order to introduce an element of complexity. These wines possess the particularity of being aged on fine lees in thermo-regulated stainless steel tanks. The Champagne house of Veuve Clicquot Ponsardin has several wines stored this way.

Identification and evaluation of the winemaking sub-zones of the PDO Amyndeo winegrowing region

Context and purpose of the study. The concept of terroir encompasses the investigation of the physical environment’s influence on grapevine physiology, grape composition, and wine quality, with an emphasis on employing viticultural zoning techniques to systematically characterize and analyze terroirs.