IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 The effect of wine matrix on the initial release of volatile compounds and their evolution in the headspace

The effect of wine matrix on the initial release of volatile compounds and their evolution in the headspace

Abstract

There is evidence in the literature that non-volatile wine matrix can modify the release and therefore the perception of the compounds involved in wine aroma [1-3]. The aim of the present study is to make an estimation of the nature of these changes by using a standard volatile composition added to different real wine matrices and then analyze the headspace above them.The analytical methodology is based on a previously developed DHS-TD-GC-MS method [4]. This analytical method provides a snapshot of the contents in wine vapors and allows a better understanding of the headspace profile changes. To study the influence of the wine matrix on the release of volatile compounds, the non-volatile matrix from six different wines was isolated and all volatile compounds removed. The non-volatile matrices were used to reconstitute the six original wines but this time the volatile composition was a standard aroma solution (15 volatile compounds of different chemical families) and the same alcoholic content. The headspaces of the reconstituted wines and a model wine (12% vol. ethanol, pH 3.5) were analyzed and compared at two different moments: just after wine pouring (t=0 min) and after 10 min with glass shaking (t=10 min). The analyses were triplicated for each model wine. Also, free and total sulfur dioxide, total polyphenol index, total acidity, pH, dry mass and contents on copper, iron and zinc were determined for each wine matrix.The data collected was studied according to the time spent after wine pouring, as this factor substantially modifies the headspace of most volatile compounds. The results of a one-way ANOVA to assess the influence of the wine matrix on the initial headspace composition showed significant differences for all compounds except ethyl decanoate. Dimethyl sulfide presented marked differences among wines matrices and a significant linear anti-correlation with the copper content of the matrices. Esters showed a similar trend in the release across wine matrices, although one wine was consistently releasing lower contents of ethyl esters. Butyric and hexanoic acids were the compounds with more marked differences in release, although other compounds like β-damascenone also displayed significant differences according to the wine matrix. The variation on the release of more polar and heavier compounds, like linalool, 4-ethylphenol or vanillin in the studied matrices was more similar to that of the model wine. Only in the matrix of a young red wine a salting-out effect was detected. The data obtained in this work proves that the same volatile composition in the liquid phase of very dissimilar non-volatile wine matrices produces a headspace profile above the wines that can be significantly different and, therefore, can undoubtedly influence the perception of wine aroma.

References

[1] D.-M. Jung, S.E. Ebeler, Headspace Solid-Phase Microextraction Method for the Study of the Volatility of Selected Flavor Compounds, (2003) 6.
[2] M.-P. Sáenz-Navajas, E. Campo, L. Culleré, P. Fernández-Zurbano, D. Valentin, V. Ferreira, Effects of the Nonvolatile Matrix on the Aroma Perception of Wine, J. Agric. Food Chem. 58 (2010) 5574–5585. https://doi.org/10.1021/jf904377p.
[3] J.J. Rodríguez-Bencomo, C. Muñoz-González, I. Andújar-Ortiz, P.J. Martín-Álvarez, M.V. Moreno-Arribas, M.Á. Pozo-Bayón, Assessment of the effect of the non-volatile wine matrix on the volatility of typical wine aroma compounds by headspace solid phase microextraction/gas chromatography analysis, J. Sci. Food Agric. 91 (2011) 2484–2494. https://doi.org/10.1002/jsfa.4494.
[4] Y. Wen, R. Lopez, V. Ferreira, An automated gas chromatographic-mass spectrometric method for the quantitative analysis of the odor-active molecules present in the vapors emanated from wine, J. Chromatogr. A. 1534 (2018) 130–138. https://doi.org/10.1016/j.chroma.2017.12.064.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Poster

Authors

Lopez Ricardo¹, Wen Yan¹and Ferreira Vicente¹

¹Laboratory for Aroma Analysis and Enology, Instituto Agroalimentario de Aragón (IA2), Department of Analytical Chemistry, Faculty of Sciences, Universidad de Zaragoza

Contact the author

Keywords

headspace, aroma release, flavor-matrix interactions, wine, GC-MS

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Exploring the inhibitor effect of different commercial chitosan-based preparations on malolactic fermentation in rosé wine

Chitosan is a natural polymer of β-D-linked N-acetyl-D-glucosamine units (1,2), that has only recently been approved by OIV for its use in winemaking to help with microbial control, metal chelation, clarification, and reducing contaminants.

Polyphenols in kombucha: impact of infusion time on extraction and investigation of their behavior during “fermentation”

Kombucha is a non-alcoholic beverage made of sugared tea that is transformed by a symbiotic consortium of yeasts and bacteria. Polyphenols are expected to be responsible of several health benefits attributed to kombucha consumption, among other metabolites. This study investigated the impact of tea infusion time and of kombucha “fermentation”, on total phenolic content,

Enhancing plant defense: carbon dots for efficient spray-induced gene silencing 

Ectopic RNA application for plant defense faces challenges in tree crops, including size, diffusion, and stability of active compounds such as ribonucleoproteins and nucleic acids. While existing strategies involve expressing dsRNA in transgenic plants targeting pathogens, our research strives to develop a transient RNAi system based on Spray-Induced Gene Silencing (SIGS). This approach aims to circumvent legal barriers and public concerns associated with genetically modified organisms (GMOs). Our strategy integrates SIGS with branched polyethyleneimine-functionalized Carbon Dots (bPEI-CDs) as nanocarriers, effectively addressing unique delivery challenges in plant defense as RNA stability and uptake enhancement

Impact of changing climatic factors on physiological and vegetative growth

Scientific information on grapevine response to predicted levels of climate parameters is scarce and not sufficient to properly position the Wine Industry for the future. It is critical that the combined effects of increased temperature and CO2 on grapevines should be examined, without omitting the important link to soil water conditions. The purpose of this study is to quantify the effects of envisioned changes in climatic parameters on the functioning and growth of young grafted grapevines under controlled conditions, simulating expected future climate changes. Scientific knowledge of precisely how the newly-planted grapevine will react morphologically, anatomically and physiologically (at leaf, root and whole plant level) to the expected changes in important climatic parameters will enable producers to make better-informed decisions regarding terroir, cultivar and rootstock choices as well as the adaptation of current cultivation practices.

Une procédure de mise à jour des zones AOC

In France, one of INAO missions is to delimit the production area of the « Appellations d’origine contrôlées » (AOC). For wine AOC, the delimitation of plots allows for identifying plots of land that respond to technical criteria of the vine location, criteria adapted in every appellation. Some old delimitations AOC are not in adequacy with their territory. Indeed, in spite the existence of a politic aiming to protect production areas AOC, urbanization, road infrastructure or quarries occupy surfaces classified in AOC today.