IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 The effect of wine matrix on the initial release of volatile compounds and their evolution in the headspace

The effect of wine matrix on the initial release of volatile compounds and their evolution in the headspace

Abstract

There is evidence in the literature that non-volatile wine matrix can modify the release and therefore the perception of the compounds involved in wine aroma [1-3]. The aim of the present study is to make an estimation of the nature of these changes by using a standard volatile composition added to different real wine matrices and then analyze the headspace above them.The analytical methodology is based on a previously developed DHS-TD-GC-MS method [4]. This analytical method provides a snapshot of the contents in wine vapors and allows a better understanding of the headspace profile changes. To study the influence of the wine matrix on the release of volatile compounds, the non-volatile matrix from six different wines was isolated and all volatile compounds removed. The non-volatile matrices were used to reconstitute the six original wines but this time the volatile composition was a standard aroma solution (15 volatile compounds of different chemical families) and the same alcoholic content. The headspaces of the reconstituted wines and a model wine (12% vol. ethanol, pH 3.5) were analyzed and compared at two different moments: just after wine pouring (t=0 min) and after 10 min with glass shaking (t=10 min). The analyses were triplicated for each model wine. Also, free and total sulfur dioxide, total polyphenol index, total acidity, pH, dry mass and contents on copper, iron and zinc were determined for each wine matrix.The data collected was studied according to the time spent after wine pouring, as this factor substantially modifies the headspace of most volatile compounds. The results of a one-way ANOVA to assess the influence of the wine matrix on the initial headspace composition showed significant differences for all compounds except ethyl decanoate. Dimethyl sulfide presented marked differences among wines matrices and a significant linear anti-correlation with the copper content of the matrices. Esters showed a similar trend in the release across wine matrices, although one wine was consistently releasing lower contents of ethyl esters. Butyric and hexanoic acids were the compounds with more marked differences in release, although other compounds like β-damascenone also displayed significant differences according to the wine matrix. The variation on the release of more polar and heavier compounds, like linalool, 4-ethylphenol or vanillin in the studied matrices was more similar to that of the model wine. Only in the matrix of a young red wine a salting-out effect was detected. The data obtained in this work proves that the same volatile composition in the liquid phase of very dissimilar non-volatile wine matrices produces a headspace profile above the wines that can be significantly different and, therefore, can undoubtedly influence the perception of wine aroma.

References

[1] D.-M. Jung, S.E. Ebeler, Headspace Solid-Phase Microextraction Method for the Study of the Volatility of Selected Flavor Compounds, (2003) 6.
[2] M.-P. Sáenz-Navajas, E. Campo, L. Culleré, P. Fernández-Zurbano, D. Valentin, V. Ferreira, Effects of the Nonvolatile Matrix on the Aroma Perception of Wine, J. Agric. Food Chem. 58 (2010) 5574–5585. https://doi.org/10.1021/jf904377p.
[3] J.J. Rodríguez-Bencomo, C. Muñoz-González, I. Andújar-Ortiz, P.J. Martín-Álvarez, M.V. Moreno-Arribas, M.Á. Pozo-Bayón, Assessment of the effect of the non-volatile wine matrix on the volatility of typical wine aroma compounds by headspace solid phase microextraction/gas chromatography analysis, J. Sci. Food Agric. 91 (2011) 2484–2494. https://doi.org/10.1002/jsfa.4494.
[4] Y. Wen, R. Lopez, V. Ferreira, An automated gas chromatographic-mass spectrometric method for the quantitative analysis of the odor-active molecules present in the vapors emanated from wine, J. Chromatogr. A. 1534 (2018) 130–138. https://doi.org/10.1016/j.chroma.2017.12.064.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Poster

Authors

Lopez Ricardo¹, Wen Yan¹and Ferreira Vicente¹

¹Laboratory for Aroma Analysis and Enology, Instituto Agroalimentario de Aragón (IA2), Department of Analytical Chemistry, Faculty of Sciences, Universidad de Zaragoza

Contact the author

Keywords

headspace, aroma release, flavor-matrix interactions, wine, GC-MS

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Méthodologie pour application et valorisation des études de terroir dans les caves cooperatives des Côtes du Rhône (France)

L’appellation d’origine contrôlée “Côtes du Rhône” se caractérise par une très forte implantation du mouvement coopératif. Afin de mieux exploiter le potentiel qualitatif de leurs terroirs, plusieurs coopératives élaborent des “cuvées terroir”, résultat des sélections de vendanges provenant de différents secteurs.

Implementing VIS-NIR spectroscopy as a rapid and non-intrusive technique for assessing anthocyanin and phenolic concentrations in Vitis vinifera L. Grenache whole grape berries

Anthocyanins and phenolic compounds play a crucial role in winemaking, contributing to the profile, flavor, color, texture, and stability of wine. Grape clusters, specifically Vitis vinifera L. cv. Grenache, were handpicked from a commercial vineyard sited in Tudelilla, La Rioja, Spain (42°18′ 52.26″, Long. -2°7′ 59.15″, Alt. 582 m) on five distinct dates from veraison to harvest during the 2015 season. Non-contact spectral measurements were conducted on intact grape berries using a VIS-NIR spectrometer operating in the 570 – 1000 nm spectral range under controlled laboratory conditions, positioned at a distance of 25 cm from the berries. The quantification of 16 anthocyanins and phenols in 120 grape clusters was performed using HPLC, established as the reference method for validating the spectral tool.

Phenolic acid characterization in new varieties descended from Monastrell.

Phenolic acids are phytochemicals that are expansively distributed in daily food intake. Phenolic acids are involved in various physiological activities, such as nutrient uptake, enzyme activity, protein synthesis, photosynthesis, and cytoskeleton structure in seeds, leaves, roots, and stems. Also exhibit antibacterial, antiviral, anticarcinogenic, anti-inflammatory, and vasodilatory activities due to their antioxidant property.

Phenology and bioclimate of grapevine varieties in the tropical region of the São Francisco Valley, Brazil

La région de la Vallée du São Francisco, situe à 9º S, est en train d’augmenter la production des vins fins les dernières années. La région présente climat du type tropical semi-aride (climat viticole à variabilité intra-annuelle selon le Système CCM Géoviticole : “très chaud, à nuits chaudes et à sécheresse forte à sub-humide” en fonction

Viticultural zoning in the province of San Juan, Argentina. Preliminary results, year 2000

La région viticole de San Juan (Argentine) est marquée par des températures très élevées et des variations diurnes faibles. La valorisation de la connaissance de cet environnement et de ses interactions avec le fonctionnement de la vigne et le lien au vin passent par l’étude de ses terroirs et de leur caractérisation. Le point de départ de ce travail est l’étude des zones mésoclimatiques aptes à la culture de la vigne de la Province de San Juan et à la caractérisation des sols de cette même région. L’objectif est de définir le potentiel vitivinicole des zones considérées.