IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 The 1-hydroxyoctan-3-one, a molecule potentially involved in the fresh mushroom off-flavor in wines

The 1-hydroxyoctan-3-one, a molecule potentially involved in the fresh mushroom off-flavor in wines

Abstract

An organoleptic defect, called fresh mushrooms off-flavor (FMOff), appeared in wines and spirits since the 2000’s. Numerous researches demonstrated that octen-3-one, 3-octanol and octen-3-ol (C8 compounds) were involved in the mushroom off-flavor in wines. Nevertheless, these molecules alone do not explain the entire defect in wines and some odorous zones still remain without chemical identification.  Recently, Crustomyces subabruptus has been shown to be a fungus capable of systematically producing FMOff under oenological conditions. The aim of this work was (a) to identify new markers of FMOff using Crustomyces subabruptus as a laboratory model, (b) to synthesize potential candidates and (c) to correlate the levels of these compounds determined by GC-MS with sensory characterization of healthy and affected wines. In practice, Pinot noir musts were artificially contaminated by Crustomyces subabruptus in the laboratory and then fermented. The musts and corresponding wines were analyzed in an untargeted way by GC-MS. By comparison with MS spectra libraries, the 1-hydroxy-3-octanone was formally and systematically identified in these matrices. This molecule, which has never been identified in grapes nor in wine, was only referenced in the fruit of the papaya mountain after enzymatic hydrolysis of the glycosidic fractions of the fruit pulp. In order to develop a targeted analysis by GC-MS, we synthesized the 1-hydroxy-3-octanone according to a previously published procedure. Briefly, 3-hydroxypropionitrile was first silylated to protect hydroxyl function and then reacted with pentylmagnesium bromide according to the Grignard reaction. The last step involved the deprotection of the resulting alcohol to obtain the expected product. Finally, 30 wines from different vintages (those of 2017, 2018, 2019, and 2021) on which were sensorially detected FMOff were spiked with deuterated internal standards (1-octen-3-one-d2, 1-octen-3-ol-d2, 3-octanol-d4), extracted with a pentane-dichloromethane mixture (2/1, v/v), rectified at 40°C, and then analyzed by GC-MS. The analysis of these wines showed the systematic presence of 1-hydroxy-3-octanone in the 2017 wines with levels that seemed to correlate significantly (test of spearman= 0,81) with the sensory analysis scores, r²=0.65. Wines with high sensory analysis scores for FMOff have a higher level of 1-hydroxyoctan-3-one than those with lower scores. On the other hand, the wines did not systematically contained octen-3-one, 3-octanol or octen-3-ol after 4 years of ageing, suggesting that 1-hydroxy-3-octanone could be a more stable chemical marker than the other compounds in the oenological matrix. In conclusion, 1-hydroxyoctan-3-one is a new molecular candidate for tracking the FMOff. Its formal identification completes the overview of the molecules involved in this defect and opens the way to a better understanding of the appearance and evolution of fresh mushrooms off flavors in wines.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Delcros Léa1, Costis Arnaud2, Collas Sylvie1, Herve Marion1, Blondin Bruno2 and Roland Aurélie2

1MHCS, Comité Champagne, Epernay, ZI Pierre et Marie Curie – 51530 OIRY, France
2SPO, Univ Montpellier INRAE, Institut agro, Montpellier, France

Contact the author

Keywords

1-hydroxyoctan-3-one, Fresh mushroom off-flavor, Wine, Must, Volatiles compounds

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Biodiversity and biocontrol ability of Trichoderma natural populations in soil vineyards from Castilla y León region (Spain)

Trichoderma is a microorganism present in many agricultural soils and some of its species could be used as natural biological control agents. In this work, the presence of natural populations of Trichoderma was estimated in soil vineyard and its biocontrol capacity against Phaeoacremonium minimum, one of the main agent causals of grapevine trunk diseases instead of using pesticides. Moreover, physicochemical variables in soil such as pH, organic matter and nutrients were evaluated to determine a possible correlation to natural populations of Trichoderma.

Factors affecting flavonols instability of red wines due to climate change

Due to varietal factors, the formation of undesirable deposits of flavonols, especially quercetin (Q), occurs in several red wines.

WINE AS AN EMOTIONAL AND AESTHETIC OBJECT: IMPACT OF EXPERTISE

Wine tasting has been shown to provide emotions to tasters (Coste et al. 2018). How will expertise impact this emotional response? Burnham and Skilleås (2012) reported that the cultural, experiential, and aesthetic competencies characterize an expert in wine compared to a novice. Although there is no consensual definition of an aesthetic experience, Burnham and Skilleås (2012) reported that aesthetic appreciation is “disinterested, normative for others and communicable” in comparison to sensory pleasure.

Influence of nitrogen supply on colorimetric parameters of Lugana wines

AIM: Color is one of the main qualitative parameters of a wine. As a matter of fact, immediately after having opened a bottle of wine, color, even before aroma and taste, is the first sensorial parameter to be evaluated by the consumer It can change according to various factors depending on the characteristics of the grapes or on the different production and storage processes. This study aims to evaluate the color differences on Lugana wines that are fermented with different yeast and nitrogen supply.

Study of grape plant behaviour (cv. Chasselas) on various “terroirs” of the Vaud county (Switzerland)

L’étude du comportement physiologique et agronomique de la vigne (cv. Chasselas) a été réalisée en 2001 par la Station fédérale de recherches en production végétale de Changins sur divers terroirs viticoles vaudois (Suisse), dans le cadre d’un projet d’étude des terroirs viticoles vaudois en collaboration avec le bureau I LETESSIER (SIGALES) à Grenoble et l’École polytechnique fédérale de Lausanne (EPFL).