IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 The 1-hydroxyoctan-3-one, a molecule potentially involved in the fresh mushroom off-flavor in wines

The 1-hydroxyoctan-3-one, a molecule potentially involved in the fresh mushroom off-flavor in wines

Abstract

An organoleptic defect, called fresh mushrooms off-flavor (FMOff), appeared in wines and spirits since the 2000’s. Numerous researches demonstrated that octen-3-one, 3-octanol and octen-3-ol (C8 compounds) were involved in the mushroom off-flavor in wines. Nevertheless, these molecules alone do not explain the entire defect in wines and some odorous zones still remain without chemical identification.  Recently, Crustomyces subabruptus has been shown to be a fungus capable of systematically producing FMOff under oenological conditions. The aim of this work was (a) to identify new markers of FMOff using Crustomyces subabruptus as a laboratory model, (b) to synthesize potential candidates and (c) to correlate the levels of these compounds determined by GC-MS with sensory characterization of healthy and affected wines. In practice, Pinot noir musts were artificially contaminated by Crustomyces subabruptus in the laboratory and then fermented. The musts and corresponding wines were analyzed in an untargeted way by GC-MS. By comparison with MS spectra libraries, the 1-hydroxy-3-octanone was formally and systematically identified in these matrices. This molecule, which has never been identified in grapes nor in wine, was only referenced in the fruit of the papaya mountain after enzymatic hydrolysis of the glycosidic fractions of the fruit pulp. In order to develop a targeted analysis by GC-MS, we synthesized the 1-hydroxy-3-octanone according to a previously published procedure. Briefly, 3-hydroxypropionitrile was first silylated to protect hydroxyl function and then reacted with pentylmagnesium bromide according to the Grignard reaction. The last step involved the deprotection of the resulting alcohol to obtain the expected product. Finally, 30 wines from different vintages (those of 2017, 2018, 2019, and 2021) on which were sensorially detected FMOff were spiked with deuterated internal standards (1-octen-3-one-d2, 1-octen-3-ol-d2, 3-octanol-d4), extracted with a pentane-dichloromethane mixture (2/1, v/v), rectified at 40°C, and then analyzed by GC-MS. The analysis of these wines showed the systematic presence of 1-hydroxy-3-octanone in the 2017 wines with levels that seemed to correlate significantly (test of spearman= 0,81) with the sensory analysis scores, r²=0.65. Wines with high sensory analysis scores for FMOff have a higher level of 1-hydroxyoctan-3-one than those with lower scores. On the other hand, the wines did not systematically contained octen-3-one, 3-octanol or octen-3-ol after 4 years of ageing, suggesting that 1-hydroxy-3-octanone could be a more stable chemical marker than the other compounds in the oenological matrix. In conclusion, 1-hydroxyoctan-3-one is a new molecular candidate for tracking the FMOff. Its formal identification completes the overview of the molecules involved in this defect and opens the way to a better understanding of the appearance and evolution of fresh mushrooms off flavors in wines.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Delcros Léa1, Costis Arnaud2, Collas Sylvie1, Herve Marion1, Blondin Bruno2 and Roland Aurélie2

1MHCS, Comité Champagne, Epernay, ZI Pierre et Marie Curie – 51530 OIRY, France
2SPO, Univ Montpellier INRAE, Institut agro, Montpellier, France

Contact the author

Keywords

1-hydroxyoctan-3-one, Fresh mushroom off-flavor, Wine, Must, Volatiles compounds

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Fresh odorous terpenoids in wines, multiples pathways of limonene degradation.

Mint aromas in wine, which manifest as “cool” or “fresh” character, can originate from different chemical classes, one of which is the terpenoids. A broadly diverse, naturally occurring class of chemical compounds, terpenes possess wide applications across multiple industries due to their pharmaceutical, antiseptic, medical, and aromatic properties. Monoterpenes, a subclass of terpenoids, likewise play a major role in wine sensory perception. Within the monoterpenes, those possessing “mint” odor qualities have often been studied in the context of “vegetal” or “herbal” wine faults; however, their role in positive aromatic evolution is less understood. Yet an extensive 2015 study of older premium Bordeaux red wines identified mint as a contributing factor in quality bouquet development. From that point, it was necessary to investigate the origins of those monoterpenes as well as the chemical conditions required for their development during ageing. Those two key points could finally facilitate predicting the apparition of minty character in older wines based on their composition while young.
A principal contributor is the cyclic monoterpene limonene, which was isolated relatively early in grapes and wine. Not only does limonene itself possess a cool, fresh odor, it is also a precursor for, and possible derivative of, additional mint monoterpenes. Among the most commonly found monoterpenes, limonene and its derivatives can constitute the majority of the essential oils of citrus fruits, mint and herb plants, and coniferous trees. Many of these mint monoterpenes also occur in grapes and wine. With aromas ranging from woody and earthy to citrus to mint and herbaceous, their contribution to wine is potentially diverse and multi-faceted. While sometimes, found at concentrations below the sensory threshold, synergistic effects between these molecules could render them perceivable.
This review looks at limonene and its transformation as studied in different matrices, and potential parallels or analogues in wine. Moreover, within the complex kinetics of wine aging, the relative concentrations of mint monoterpenes appears to continue to evolve and change, with additional evidence from model wine solutions suggesting they may even revert to their originating precursors. Continued study of mint monoterpenes and their role in wine aromatics will contribute to a deeper understanding of the development of aging bouquet and the longevity of premium wines.

Are biochemical markers the key to predicting wine aroma balance?

Wine aroma quality is a complex interplay of factors like terroir, vinification techniques, that modulate aroma compound composition.

Identification of key-odorants in Sauternes Wines

The aim of the present work was to investigate Sauternes wines aromas. The flavor profiles of two wines (vintages 2002 and 2003) were investigated. Key-odorants have been determined by AEDA applied to Amberlite XAD-2 resin extracts. Various complementary techniques were used to identify the compounds (pHMB extraction, chemical synthesis of non-commercial standards, co-injections on two capillary columns, odor description at the sniffing port, GC-MS and GC-PFPD).

Building of a hierarchy of wines based on terroirs: an initiative from the producers of Muscadet

The Muscadet area is situated in the southeast of Nantes, close to the Atlantic coast. It constitutes the western extension
of the French vineyard “Loire Valley”. The Muscadet is renowned and often spontaneously linked to a white wine.
However it remains misconceived as an ordinary wine, lacking authenticity.

qNMR metabolomics a tool for wine authenticity and winemaking processes discrimination

qNMR Metabolomic applied to wine offers many possibilities. The first application that is increasingly being studied is the authentication of wines through environmental factors such as geographical origin, grape variety or vintage (Gougeon et al., 2019).