IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 The 1-hydroxyoctan-3-one, a molecule potentially involved in the fresh mushroom off-flavor in wines

The 1-hydroxyoctan-3-one, a molecule potentially involved in the fresh mushroom off-flavor in wines

Abstract

An organoleptic defect, called fresh mushrooms off-flavor (FMOff), appeared in wines and spirits since the 2000’s. Numerous researches demonstrated that octen-3-one, 3-octanol and octen-3-ol (C8 compounds) were involved in the mushroom off-flavor in wines. Nevertheless, these molecules alone do not explain the entire defect in wines and some odorous zones still remain without chemical identification.  Recently, Crustomyces subabruptus has been shown to be a fungus capable of systematically producing FMOff under oenological conditions. The aim of this work was (a) to identify new markers of FMOff using Crustomyces subabruptus as a laboratory model, (b) to synthesize potential candidates and (c) to correlate the levels of these compounds determined by GC-MS with sensory characterization of healthy and affected wines. In practice, Pinot noir musts were artificially contaminated by Crustomyces subabruptus in the laboratory and then fermented. The musts and corresponding wines were analyzed in an untargeted way by GC-MS. By comparison with MS spectra libraries, the 1-hydroxy-3-octanone was formally and systematically identified in these matrices. This molecule, which has never been identified in grapes nor in wine, was only referenced in the fruit of the papaya mountain after enzymatic hydrolysis of the glycosidic fractions of the fruit pulp. In order to develop a targeted analysis by GC-MS, we synthesized the 1-hydroxy-3-octanone according to a previously published procedure. Briefly, 3-hydroxypropionitrile was first silylated to protect hydroxyl function and then reacted with pentylmagnesium bromide according to the Grignard reaction. The last step involved the deprotection of the resulting alcohol to obtain the expected product. Finally, 30 wines from different vintages (those of 2017, 2018, 2019, and 2021) on which were sensorially detected FMOff were spiked with deuterated internal standards (1-octen-3-one-d2, 1-octen-3-ol-d2, 3-octanol-d4), extracted with a pentane-dichloromethane mixture (2/1, v/v), rectified at 40°C, and then analyzed by GC-MS. The analysis of these wines showed the systematic presence of 1-hydroxy-3-octanone in the 2017 wines with levels that seemed to correlate significantly (test of spearman= 0,81) with the sensory analysis scores, r²=0.65. Wines with high sensory analysis scores for FMOff have a higher level of 1-hydroxyoctan-3-one than those with lower scores. On the other hand, the wines did not systematically contained octen-3-one, 3-octanol or octen-3-ol after 4 years of ageing, suggesting that 1-hydroxy-3-octanone could be a more stable chemical marker than the other compounds in the oenological matrix. In conclusion, 1-hydroxyoctan-3-one is a new molecular candidate for tracking the FMOff. Its formal identification completes the overview of the molecules involved in this defect and opens the way to a better understanding of the appearance and evolution of fresh mushrooms off flavors in wines.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Delcros Léa1, Costis Arnaud2, Collas Sylvie1, Herve Marion1, Blondin Bruno2 and Roland Aurélie2

1MHCS, Comité Champagne, Epernay, ZI Pierre et Marie Curie – 51530 OIRY, France
2SPO, Univ Montpellier INRAE, Institut agro, Montpellier, France

Contact the author

Keywords

1-hydroxyoctan-3-one, Fresh mushroom off-flavor, Wine, Must, Volatiles compounds

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Investigating the variability of basal crop coefficient across diverse production contexts in commercial vineyards

Vine water use is a critical determinant of vineyard management practices, especially in the context of climate change.

Additives od aids? Evaluation of aroma compounds release from oenological tannins of different botanical origins.

Oenological tannins are products extracted from various botanical sources, such as mimosa,
acacia, oak gall, quebracho, chestnut and tara. The polyphenolic component is obtained through a solid-liquid extraction also using specific solvents, then removed by evaporation or freeze-drying. Tannins are employed in two phases of winemaking, during the pre-fermentative phase or during fining with different purposes such as modulate antioxidant activity, colour stabilization, bacteriostatic activity, protein stabilization and modulation of sensory properties. To date, the current regulatory framework is not very clear. In fact, the Codex Alimentarius classifies commercial tannins as “food additives” but also as
“processing aids”. The main distinction is that “additives” have a technological function in the final food, whereas “processing aids” do not. In this sense, oenological tannins, despite the technological treatments, could contain aromatic compounds of the botanical species they belong to and release them to the wine.

Ethyl esters interact with the major wine Thaumatin Like Protein VVTL1

The interactions among aromatic compounds and proteins is an important issue for the quality of foods and beverages. In wine, the loss of flavor after vinification is associated to bentonite treatment and this effect can be the result of the removal of aroma compounds which are bound wine proteins. This phenomenon was recently demonstrated for long chain fatty acids and their ethyl esters (1). Since these latter compounds are spectroscopically silent, their association with proteins is not easy to measure.

Unprecedented rainfall in northern Portugal

Aim: Climate is arguably one of the most important factors determining the quality of wine from any given grapevine variety. High rainfall during spring can promote growth of the vines but increases the risk of fungal disease, while vineyard operations can be disrupted, as machinery may be prevented from getting in the vineyard owing to muddy soils.

Effect of foliar treatment of methyl jasmonate and nanoparticles doped with methyl jasmonate on Monastrell grape skin cell wall

The use of elicitors to promote the biosynthesis of secondary metabolites in grapes has been tackled in several reports, however its study linked to nanotechnology is less developed.