IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Evolution of cabernet sauvignon wines macerated with their own toasted vine-shoots

Evolution of cabernet sauvignon wines macerated with their own toasted vine-shoots

Abstract

Toasted pruning vine-shoots represent a promising new enological tool for developing wines with chemical and organoleptic high quality, allowing that the resources of the vineyard to be returned to the wine through a “circular process”.
In this work, Cabernet Sauvignon wines were macerated after malolactic fermentation with their own toasted vine-shoots fragments in two different doses and after removed them, aged in bottle. The quality of wines was analyzed at bottling time and after  120 days, in terms of phenolic compounds by HPLC-DAD, volatile composition by SBSE-GC-MS and at sensory level by a specific scorecard.
Regarding volatile compounds, results showed that at bottling time the greatest differences with respect to the control wine were observed when the lowest dose of toasted vine-shoots was used. These wines showed an increase in the total of alcohols and aldehydes, along with some volatile phenols such as guaiacol or syringol and some terpenes as geraniol or linalool. However, after  bottling time the content of volatile compounds in wines from vine-shoot treatments increased significantly to higher total levels of volatile compounds than the control wine. Moreover, vanillin was detected in all wines after ageing in bottle with slightly higher content in wines macerated with the lowest dosage of vine-shoots.
In terms of phenolic compounds, wines elaborated in contact with vine-shoots showed a lower content of total phenolic compounds than the control wine at bottling time.
Nevertheless, after  bottling time, wines treated with the lower dose of vine-shoots showed an increase in total phenolic compounds until similar levels of control wine, which reduced their content along bottling. This suggests a better evolution of wines macerated with lower doses of toasted vine-shoots. In detail, stilbenes were the only family of phenolic compounds that increased its concentration as a consequence of vine-shoots maceration. trans-Resveratrol increased significantly when vine-shoots were used, reaching levels up to 9 times higher than the control wine, and viniferine was observed at the endo of bottling time in all wines, but with a higher concentration in treated wines. In addition, and as expected, the total anthocyanin content was reduced in all wines with bottle aging, which was less in wines from the lowest dose of vine-shoots.
Finally, in terms of sensory analysis, wines from vine-shoots treatments showed enhanced notes like nuts, toasted, and sweet woody, being this last one associated with the use of toasted vine-shoots, as well as a reduction in the vegetal descriptors characteristic of the Cabernet Sauvignon variety. 

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Poster

Authors

Salinas M.Rosario1, Cebrián-Tarancón Cristina1, Fernández-Roldán F.1,2, Sánchez-Gómez R.1 and Alonso Gonzalo L.1

1 E.T.S.I. Agrónomos y Montes, Universidad de Castilla-La Mancha, Spain
2 Pago de la Jaraba, Crta 

Contact the author

Keywords

bottle ageing, enological additive, phenolic and volatile compounds, sensory analysis, toasted vine-shoots

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Replay of the Wine Vision 2040 event

A webinar organised by the UBC Wine Research Centre, on June 25th 2020. About Wine Vision 2040 Wine Vision 2040 is delivered by wine-passionate, high-profile individuals keen to share ideas and views that will spark conversations within wine communities.  No...

Mapping terroirs at the reconnaissance level, by matching soil, geology, morphology, land cover and climate databases with viticultural and oenological results from experimental vineyards

This work was aimed at setting up a methodology to define and map the «Unités Terroir de Reconnaissance» (UTR), combining environmental information stored in a Soil Information System with experimental data coming from benchmark vineyards of Sangiovese vine.

Dormancy conundrum: thermal requirements plasticity to reach budburst may be explained by annual environmental dynamics

Deciphering grapevine dormancy is crucial in the current context of climatic challenges: advancing budburst phenology and increased late frost probabilities, observed in the last decades and expected to further increase, require deeper understanding. Beyond higher mean temperatures, abiotic stresses such as water deficit have also been emphasized as actors. In this framework, we aimed at exploring new methodologies for tracking dormancy cycle and testing the interplay on its regulation of temperature dynamics and drought.
In a first experiment, twenty-one Vitis vinifera varieties were monitored during ecodormancy and budburst over three years.

Effect of simulated shipping conditions on colour and SO2 evolution in soave wines

The shelf life of food is defined as the period in which the product will remain safe, is certain to retain desired sensory, chemical, physical, and microbiological characteristics

Use of multispectral satellite for monitoring vine water status in mediterranean areas

The development of new generations of multispectral satellites such as Sentinel-2 opens possibilities as to vine water status assessment (Cohen et al., 2019). Based on a three years field campaign, a model of Stem Water Potential (SWP) estimation on vine using four satellite bands in Red, Red-Edge, NIR and SWIR domains was developed (Laroche-Pinel et al., 2021). The model relies on SWP field measures done using a pressure chamber (Scholander et al., 1965), which is a common, robust and precise method to assess vine water status (Acevedo-Opazo et al., 2008). The model was mainly developed from from SWP measures on Syrah N (Laroche Pinel E., 2021).

A large scale monitoring was organized in different vineyards in the Mediterranean region in 2021. 10 varieties amongst the most represented in this area were monitored (Cabernet sauvignon N, Chardonnay B, Cinsault N, Grenache N, Merlot N, Mourvèdre N, Sauvignon B, Syrah N, Vermentino B, Viognier B). The model was used to produce water status maps from Sentinel-2 images, starting from the beginning of June (fruit set) up to September (harvest). The average estimated SWP for each vine was compared to actual field SWP measures done by wine growers or technicians during usual monitoring of irrigation programs. The correlations between mean estimated SWP and mean measured SWP were at the same level than expected by the model. (Laroche Pinel, 2021) The general SWP kinetics were comparable. The estimated SWP would have led to same irrigation decisions concerning the date of first irrigation in comparison with measured SWP.

Acevedo-Opazo, C., Tisseyre, B., Ojeda, H., Ortega-Farias, S., Guillaume, S. (2008). Is it possible to assess the spatial variability of vine water status? OENO One, 42(4), 203.
Cohen, Y., Gogumalla, P., Bahat, I., Netzer, Y., Ben-Gal, A., Lenski, I., … Helman, D. (2019). Can time series of multispectral satellite images be used to estimate stem water potential in vineyards? In Precision agriculture ’19, The Netherlands: Wageningen Academic Publishers, pp. 445–451.
Laroche-Pinel, E., Duthoit, S., Albughdadi, M., Costard, A. D., Rousseau, J., Chéret, V., & Clenet, H. (2021). Towards vine water status monitoring on a large scale using sentinel-2 images. remote sensing, 13(9), 1837.
Laroche-Pinel,E. (2021). Suivi du statut hydrique de la vigne par télédétection hyper et multispectrale. Thèse INP Toulouse, France.
Scholander, P.F., Bradstreet, E.D., Hemmingsen, E.A., & Hammel, H.T. (1965). Sap pressure in vascular plants: Negative hydrostatic pressure can be measured in plants. Science, 148(3668), 339–346.