IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Evolution of cabernet sauvignon wines macerated with their own toasted vine-shoots

Evolution of cabernet sauvignon wines macerated with their own toasted vine-shoots

Abstract

Toasted pruning vine-shoots represent a promising new enological tool for developing wines with chemical and organoleptic high quality, allowing that the resources of the vineyard to be returned to the wine through a “circular process”.
In this work, Cabernet Sauvignon wines were macerated after malolactic fermentation with their own toasted vine-shoots fragments in two different doses and after removed them, aged in bottle. The quality of wines was analyzed at bottling time and after  120 days, in terms of phenolic compounds by HPLC-DAD, volatile composition by SBSE-GC-MS and at sensory level by a specific scorecard.
Regarding volatile compounds, results showed that at bottling time the greatest differences with respect to the control wine were observed when the lowest dose of toasted vine-shoots was used. These wines showed an increase in the total of alcohols and aldehydes, along with some volatile phenols such as guaiacol or syringol and some terpenes as geraniol or linalool. However, after  bottling time the content of volatile compounds in wines from vine-shoot treatments increased significantly to higher total levels of volatile compounds than the control wine. Moreover, vanillin was detected in all wines after ageing in bottle with slightly higher content in wines macerated with the lowest dosage of vine-shoots.
In terms of phenolic compounds, wines elaborated in contact with vine-shoots showed a lower content of total phenolic compounds than the control wine at bottling time.
Nevertheless, after  bottling time, wines treated with the lower dose of vine-shoots showed an increase in total phenolic compounds until similar levels of control wine, which reduced their content along bottling. This suggests a better evolution of wines macerated with lower doses of toasted vine-shoots. In detail, stilbenes were the only family of phenolic compounds that increased its concentration as a consequence of vine-shoots maceration. trans-Resveratrol increased significantly when vine-shoots were used, reaching levels up to 9 times higher than the control wine, and viniferine was observed at the endo of bottling time in all wines, but with a higher concentration in treated wines. In addition, and as expected, the total anthocyanin content was reduced in all wines with bottle aging, which was less in wines from the lowest dose of vine-shoots.
Finally, in terms of sensory analysis, wines from vine-shoots treatments showed enhanced notes like nuts, toasted, and sweet woody, being this last one associated with the use of toasted vine-shoots, as well as a reduction in the vegetal descriptors characteristic of the Cabernet Sauvignon variety. 

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Poster

Authors

Salinas M.Rosario1, Cebrián-Tarancón Cristina1, Fernández-Roldán F.1,2, Sánchez-Gómez R.1 and Alonso Gonzalo L.1

1 E.T.S.I. Agrónomos y Montes, Universidad de Castilla-La Mancha, Spain
2 Pago de la Jaraba, Crta 

Contact the author

Keywords

bottle ageing, enological additive, phenolic and volatile compounds, sensory analysis, toasted vine-shoots

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

PESTICIDE RESIDUES IN THE VINEYARD ENVIRONMENTS: VINE LEAVES, GRAPE BERRIES, WINES, HONEYBEES AND ASIAN HORNETS

Synthetic pesticides are widely used in viticulture to ensure steady harvest quality and quantity. Fungicides are primarily used to control grapevine diseases but insecticides and herbicides are likewise used. Pesticide residues in viticultural areas currently represent a strong societal concern, but may also affect different trophic chains in such areas. In this project we wish to analyse honeybees collected from hives placed in different vineyards, their natural predator (the invasive hornet Vespa velutina), as well as the honey, grape berries, and wines produced.

Influence of the irrigation period in Tempranillo grapevine, under the edaphoclimatic conditions of the Duero river valley

Irrigation of vineyards is a matter of controversial arguments at areas of high quality wine production. Besides, the effects of the water in the plant are closer related to the water availability than to the irrigation regime.

Identifying best parameters to characterize genotypes capability of retaining adequate malic acid at harvest and in final wines

Under current climate change pressures, obtaining grapes with adequate acidity at harvest is one of the main challenges for growers, especially if the goal is producing sparkling wines. This issue arises from two main occurrences: i) higher temperatures enhance degradation of malic acid; ii) grape maturity may occur under suboptimal climatic conditions due to an advanced phenology.

Effect of the winemaking technology on the phenolic compounds, foam parameters in sparklig wines

Contribution Sparkling wines elaborated following the traditional method undergo a second fermentation in closed bottles of base wines, followed by aging of wines with lees for at least 9 months. Most of the sparkling wines elaborated are white and rosé ones, although the production of red ones is highly increasing. One of the initial problems in red sparkling wine processing is to obtain suitable base wines that should have moderate alcohol content and astringency and adequate color intensity; which is difficult to obtain when grapes must be harvested at low phenolic and industrial maturity stage. The low phenolic maturity degree in the red grapes makes essential to choose an adequate winemaking methodology to obtain the base wines because the extracted polyphenols will vary according the winemaking technique: carbonic maceration or destemmed-crushed grapes.

Elevational range shifts of mountain vineyards: Recent dynamics in response to a warming climate

Increasing temperatures worldwide are expected to cause a change in spatial distribution of plant species along elevational gradients and there are already observable shifts to higher elevations as a consequence of climate change for many species. Not only naturally growing plants, but also agricultural cultivations are subject to the effects of climate change, as the type of cultivation and the economic viability depends largely on the prevailing climatic conditions. A shift to higher elevations therefore represents a viable adaptation strategy to climate change, as higher elevations are characterized by lower temperatures. This is especially important in the case of viticulture because a certain wine-style can only be achieved under very specific climatic conditions. Although there are several studies investigating climatic suitability within winegrowing regions or longitudinal shifts of winegrowing areas, little is known about how fast vineyards move to higher elevations, which may represent a viable strategy for winegrowers to maintain growing conditions and thus wine-style, despite the effects of climate change. We therefore investigated the change in the spatial distribution of vineyards along an elevational gradient over the past 20 years in the mountainous wine-growing region of Alto Adige (Italy). A dataset containing information about location and planting year of more than 26000 vineyard parcels and 30 varieties was used to perform this analysis. Preliminary results suggest that there has been a shift to higher elevations for vineyards in general (from formerly 700m to currently 850 m a.s.l., with extreme sites reaching 1200 m a.s.l.), but also that this development has not been uniform across different varieties and products (i.e. vitis vinifera vs hybrid varieties and still vssparkling wines). This is important for climate change adaptation as well as for rural development. Mountain areas, especially at mid to high elevations, are often characterized by severe land abandonment which can be avoided to some degree if economically viable and sustainable land management strategies are available.