IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Evolution of cabernet sauvignon wines macerated with their own toasted vine-shoots

Evolution of cabernet sauvignon wines macerated with their own toasted vine-shoots

Abstract

Toasted pruning vine-shoots represent a promising new enological tool for developing wines with chemical and organoleptic high quality, allowing that the resources of the vineyard to be returned to the wine through a “circular process”.
In this work, Cabernet Sauvignon wines were macerated after malolactic fermentation with their own toasted vine-shoots fragments in two different doses and after removed them, aged in bottle. The quality of wines was analyzed at bottling time and after  120 days, in terms of phenolic compounds by HPLC-DAD, volatile composition by SBSE-GC-MS and at sensory level by a specific scorecard.
Regarding volatile compounds, results showed that at bottling time the greatest differences with respect to the control wine were observed when the lowest dose of toasted vine-shoots was used. These wines showed an increase in the total of alcohols and aldehydes, along with some volatile phenols such as guaiacol or syringol and some terpenes as geraniol or linalool. However, after  bottling time the content of volatile compounds in wines from vine-shoot treatments increased significantly to higher total levels of volatile compounds than the control wine. Moreover, vanillin was detected in all wines after ageing in bottle with slightly higher content in wines macerated with the lowest dosage of vine-shoots.
In terms of phenolic compounds, wines elaborated in contact with vine-shoots showed a lower content of total phenolic compounds than the control wine at bottling time.
Nevertheless, after  bottling time, wines treated with the lower dose of vine-shoots showed an increase in total phenolic compounds until similar levels of control wine, which reduced their content along bottling. This suggests a better evolution of wines macerated with lower doses of toasted vine-shoots. In detail, stilbenes were the only family of phenolic compounds that increased its concentration as a consequence of vine-shoots maceration. trans-Resveratrol increased significantly when vine-shoots were used, reaching levels up to 9 times higher than the control wine, and viniferine was observed at the endo of bottling time in all wines, but with a higher concentration in treated wines. In addition, and as expected, the total anthocyanin content was reduced in all wines with bottle aging, which was less in wines from the lowest dose of vine-shoots.
Finally, in terms of sensory analysis, wines from vine-shoots treatments showed enhanced notes like nuts, toasted, and sweet woody, being this last one associated with the use of toasted vine-shoots, as well as a reduction in the vegetal descriptors characteristic of the Cabernet Sauvignon variety. 

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Poster

Authors

Salinas M.Rosario1, Cebrián-Tarancón Cristina1, Fernández-Roldán F.1,2, Sánchez-Gómez R.1 and Alonso Gonzalo L.1

1 E.T.S.I. Agrónomos y Montes, Universidad de Castilla-La Mancha, Spain
2 Pago de la Jaraba, Crta 

Contact the author

Keywords

bottle ageing, enological additive, phenolic and volatile compounds, sensory analysis, toasted vine-shoots

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Characterization and application of silicon carbide (SiC) membranes to oenology

After fermentations, the crude wine is a turbid medium not accepted by the consumer therefore, it needs to be filtered

INFLUENCES OF SO2 ADDITION AND STORAGE CONDITIONS IN THE DETERMINATION OF MEAN DEGREE OF POLYMERIZATION OF PROANTHOCYANIDINS IN AGED RED WINES

The structural diversity is one of the most remarkable characteristics of proanthocyanidins (PA). Indeed, PA in wines may vary in the B-ring and C-ring substitutes, the C-ring stereochemistry, the degree of polymerization (DP) and the linkage between the monomers. Knowing in detail the structural characteristics of the PA of a wine can help us to understand and modulate several sensorial characteristics of the wine, such as color, antioxidant properties, flavor, and mouthfeel properties. In the last years was discovered and confirmed the presence of sulfonated monomeric and oligomeric flavan-3-ols in wine [1], as well as was pointed out their importance in wine quality [1,2].

Can soil nitrate explain polyphenol and anthocyanin content in vineyard with similar available soil water regime? 

Nitrogen (N) is quite important nutrient in grapevine development and must quality, but under Mediterranean climatic conditions, available soil water (ASW) during grapevine development can also influence vigour and must quality. The aim was to determine the influence of soil nitrate (NO3-) availability on N foliar, yield, and must quality in vineyards with similar available water holding capacity (AWC). For this purpose, four cv. Tempranillo (Vitis vinifera L.) vineyards were selected. All of them are placed in Uruñuela municipality (La Rioja, Spain), separated less than 2.5 km and in a slope <1 %, in soils with similar soil chemistry properties and with similar rooting depth (ranging between 105 cm and 110 cm).

Fermentation Products, Degradation Parameters, (Poly)Phenols And Potassium Content In Tokaji Aszú Winemaking

The historic Tokaj Wine Region in northeast Hungary, a UNESCO World Heritage region since 2002, encompasses 5,500 ha vineyards. Produced from “noble rot” grapes, Tokaji Aszú is known as one of the oldest botrytized wines all over the world. Special microclimatic conditions (due to Bodrog and Tisza rivers, Indian summer), soil conditions (clay, loess on volcanic bedrock) and grape

The impact of branched chain and aromatic amino acids on fermentation kinetics and aroma biosynthesis by wine yeast Saccharomyces cerevisiae

One of the major determinants of wine quality is the aroma. Wine aroma is the human perception of the matrix of grape and yeast derived volatiles and their interaction that contribute to flavour wine. Most common are higher alcohols, ester and aldehydes. In previous studies the formation of characteristic volatile compounds have been linked to the metabolism of branched-chain and aromatic amino acids
(BCAAs) in synthetic grape must. Here we report on an investigation to assess the impact of the initial amino acid concentration on the production of aroma compounds by the industrial yeast VIN13 grown in both synthetic and real grape musts.