terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Effects of heat and water stress on grapevine health: primary and secondary metabolism

Effects of heat and water stress on grapevine health: primary and secondary metabolism


Grapevine resilience to climate change has become one of the most pressing topics in the Viticulture & Enology field. Vineyard health demands understanding the mechanisms that explain the direct and indirect interactions between environmental stressors. The current climate change scenario, where drought and heat-wave are more frequent and intense, strongly demands improving our knowledge of environmental stresses. During a heatwave, the ambient temperature rises above the plant’s average tolerance threshold and, generally, above 35 oC plant’s adaptation to heat stress is activated1. Likewise, to endure and adjust to water deficits, plants regulate water loss by decreasing stomatal conductance (gs)2,3. In this study, we aimed to investigate how the combination of drought and heat stresses affects grapevine leaf physiology and secondary metabolism. To mimic our current climate change scenario, we induced stressed leaves to a 0.15 < gs < 0.05 mol H2O m-2s-1 range followed by a two-day heatwave where the mean temperature was elevated to +6 ±2.4SD oC compared to control treatment 27 ±3.7SD oC. Further, we explored the metabolic response of grapevine leaves to the multi-stress by detecting and quantifying (through target-metabolomics analysis) anticipated changes in phenolic acids, flavonoids, and stilbenes. The premilitary analysis does not show statistical differences when comparing the stressed leaves with the control. Taken together these results allow us to better understand the mechanisms of resilience to multi-stress and predict how grapevines and vineyards will respond to current climate change.

  1. Taiz, L., Zeige, E., Moller, I. & Murphy, A. Plant physiology and development. (Sinauer Associates Inc., 2015).
  2. Jones, H. G. Stomatal control of photosynthesis and transpiration. Journal of experimental botany 387–398 (1998).
  3. Medrano, H. Regulation of Photosynthesis of C3 Plants in Response to Progressive Drought: Stomatal Conductance as a Reference Parameter. Annals of Botany 89, 895–905 (2002).


Publication date: October 11, 2023

Issue: ICGWS 2023

Type: Poster


Ana Clara Fanton1*, Stéphanie Cluzet2, Gregory Gambetta3

1 INRAE-Bordeaux, Villenave d’Ornon 33882, France
2 Université de Bordeaux, Villenave d’Ornon, France

3 Bordeaux-Sciences Agro, Villenave d’Ornon France

Contact the author*


climate change, grapevine metabolome, viticulture, stress-combination


2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series


Related articles…

Accumulation of deleterious mutations in grapevine and its relationship with traits of interest for wine production and resilience

Deleterious mutations that severely reduce population fitness are rapidly removed from the gene pool by purifying selection. However, evolutionary drivers such as genetic drift brought about by demographic bottlenecks may comprise its efficacy by allowing deleterious mutations to accumulate, thereby limiting the adaptive potential of populations. Moreover, positive selection can hitchhike mildly deleterious mutations due to linkage caused by lack of recombination. Similarly, in the context of species domestication, artificial selection mimics these evolutionary processes, which can have undesirable consequences for production and resilience. In this study, we evaluated the extent of the accumulation of deleterious mutations and the magnitude of their effects (also known as genetic load) at the whole-genome scale for ca.

Late winter pruning induces a maturity delay under temperature-increased conditions in cv. Merlot from Chile

Chile is considered vulnerable to climate change; and these phenomena affect several mechanisms in the grape physiology and quality. The global temperature increase affects sugar contents, organic acids, and phenolic compounds in grapes, producing an imbalance maturity. In this sense, an alternative to reduce the impact is to perform pruning after vine budburst, known as “Late Pruning” (LP).

Advancing grapevine science through genomic research

The seminar will examine the complexities and prospects of genomic research on Vitis species, characterize by exceptionally high heterozygosity and common interspecific gene flow. The seminar will showcase case studies highlighting the critical role of diploid genome references in grape research, specifically in areas such as aroma development, disease resistance, and domestication traits. It will also address the emerging focus on pangenomes within the Vitis genus, particularly in the context of genetic studies on naturally interbreeding populations.

Effect of ultraviolet B radiation on pathogenic molds of grapes

The fungicidal effect of UV-C radiation (100-280 nm wavelength) is well known, but its applicability for the control of pathogenic molds of grapes is conditioned by its effect on the host and by the risks inherent in its handling[1].
As an alternative, the effect in vitro of UV-B radiation (280-315 nm) on the main pathogenic molds of grapes has been studied: Botrytis cinerea, Aspergillus niger, Penicillium expansum and Rhizopus stolonifer.

Application of UV-B radiation in pre- and postharvest as an innovative and sustainable cultural practice to improve grape phenolic composition

Ultraviolet radiation (UVR) is a minor part of the solar spectrum, but it represents an important ecological factor that influences many biological processes related to plant growth and development. In recent years, the application of UVR in agriculture and food production is emerging as a clean and environmentally friendly technology.
In grapevine, many studies have been conducted on the effects of ambient levels of UVR, but there are few considering the effects of UV-B application on grape phenolic composition under commercial growing or postharvest conditions.