IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Evaluation of “Accentuated cut edges” technique on the release of varietal thiols and their precursors in Shiraz and Sauvignon blanc wine production

Evaluation of “Accentuated cut edges” technique on the release of varietal thiols and their precursors in Shiraz and Sauvignon blanc wine production

Abstract

Accentuated cut edges (ACE) is a novel grape crushing technique used sequentially after a conventional crusher to increase the extraction rate and content of polyphenolics, as shown for Pinot noir wine. This inspired us to apply the technique during Shiraz and Sauvignon blanc winemaking, primarily to assess its impact on the extraction of varietal thiol precursors in grape must/juice and formation of varietal thiols in the resultant wines. Other variables were jointly studied, including skin contact time and water addition to Shiraz grape must, and yeast strain and malolactic fermentation (MLF) for Sauvignon blanc. Varietal thiol precursors (3-S-glutathionylhexan-1-ol (GSH-3-SH), 3-S-cysteinylhexan-1-ol (Cys-3-SH)) and varietal thiols derivatised with 4,4′-dithiodipyridine were separately determined using high performance liquid chromatography tandem mass spectrometry. The concentrations of GSH-3-SH and Cys-3-SH in Shiraz grape must and varietal thiols (3-sulfanylhexan-1-ol (3-SH) and 3-sulfanylhexyl acetate (3-SHA)) in Shiraz wine were not significantly affected by grape crushing method, but a shorter skin contact time (3 days) during fermentation significantly increased 3-SH compared to a 6-day treatment. For Sauvignon blanc juice, the evolution profile of GSH-3-SH in the ACE treatment during cold maceration showed an increase from 313 µg/L at the beginning of maceration to the maximum content of 514 µg/L within 9 h, in stark comparison to the conventional crushing treatment, which initially contained 315 µg/L and reached a maximum of 382 µg/L at the end of the cold maceration period (21 h). The evolution profile of Cys-3-SH was similar to that of the GSH-3-SH, yielding 16 µg/L in ACE and 7 µg/L in conventional crushing at the end of maceration. Varietal thiols were determined in Sauvignon blanc wine, including 4-methyl-4-sulfanylpentan-2-one (4-MSP) and enantiomers of 3-SH and 3-SHA, with concentrations of 76–188 ng/L for 4-MSP, 456–864 ng/L and 434 850 ng/L for (3S)-3-SH and (3R)-3-SH, respectively, and 13–29 ng/L and 6–15 ng/L for (3S)-3-SHA and (3R)-3-SHA, respectively. Three-way analysis of variance revealed that their concentrations were significantly affected by the interaction effects of crushing method, yeast strain, and MLF, with ACE significantly increasing their concentrations compared to conventional crushing. Differences were also observed for yeast strain and MLF, with VIN13 yeast strain leading to greater amounts of 3-SH and 3-SHA enantiomers but less 4-MSP than Sauvy, whereas MLF treatment afforded higher amounts of 3-SH enantiomers and 4-MSP but lower levels of 3-SHA enantiomers than those without MLF. The molar conversion yield from the sum of GSH-3-SH and Cys-3-SH to the sum of 3-SH and 3-SHA was relatively low – ranging from 0.65% to 1.01% – and was significantly affected by two-way interaction effects, with VIN13, MLF, and ACE significantly increasing the conversion yield by up to 0.2%.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Poster

Authors

Wang Xingchen1, Capona Dimitra L.1, Roland Aurélie2, Kang Wenyu1 and Jeffery David W.1

1Department of Wine Science and Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia
2SPO, Univ Montpellier, INRAE, Institut Agro.

Contact the author

Keywords

Accentuated cut edges; varietal thiols; precursors; three-way analysis of variance; Sauvignon blanc

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Yeast interactions in chardonnay wine fermentation: impact of different yeast species using ultra high resolution mass spectrometry

During alcoholic fermentation, when yeasts grow simultaneously, they often do not coexist passively and in most cases interact with each others

Nitrogen partitioning among vine organs as a consequence of cluster thinning

Agroscope is investigating the impact of yield on nitrogen (N) partitioning in grapevine and on must composition. The mechanism of N assimilation

Prediction of aromatic attributes of red wines from its colour properties 

Wine perception is a multisensory experience that makes use of the sight, smell, and taste senses. When wine is sensorially assessed, the stimulus received generates multiple signals that tasters convert into organoleptic descriptors. Colour is commonly the first attribute evaluated during wine tasting. Moreover, the colour properties provide the taster with a priori information of the wine’s aroma. This preconceived perception is later confirmed or denied during the aroma evaluation.

Improving the phenolic composition of cv tempranillo wines by blending grapes of different ripening state

The aim of this work was to reduce the alcohol content of Tempranillo wine. Tempranillo wines were produced by grapes harvested at different ripening dates (August 11 which was 21 oBrix and September 28 with 25 oBrix). At the second date, the Tempranillo wines were elaborated as follows: grapes were destemmed, crushed and collected into 50 L stainless-steel vats. Before preferementative maceration in cold, 50 % (M1) and 70 % (M2) of the must have been replaced by the same percentage of must from the first harvest. In addition, a control wine (C) was performed with only grapes from the second harvest.

Contaminations croisées avec les produits phytosanitaires dans les vins bio. Sources potentielles et mesures de prévention.

Organic wines, although resulting from a production method based on the non-use of synthetic phytosanitary products, are not always free of residues. These residues can result from cross-contamination during production in the field or in the cellar, during the production or aging of the wine. In recent years, with the improvement of analysis techniques, a molecule, phosphonic acid, the main metabolite of fosetyl-al (banned in organic farming) is regularly quantified in organic wines and its origin is not clearly identified.