IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Evaluation of “Accentuated cut edges” technique on the release of varietal thiols and their precursors in Shiraz and Sauvignon blanc wine production

Evaluation of “Accentuated cut edges” technique on the release of varietal thiols and their precursors in Shiraz and Sauvignon blanc wine production

Abstract

Accentuated cut edges (ACE) is a novel grape crushing technique used sequentially after a conventional crusher to increase the extraction rate and content of polyphenolics, as shown for Pinot noir wine. This inspired us to apply the technique during Shiraz and Sauvignon blanc winemaking, primarily to assess its impact on the extraction of varietal thiol precursors in grape must/juice and formation of varietal thiols in the resultant wines. Other variables were jointly studied, including skin contact time and water addition to Shiraz grape must, and yeast strain and malolactic fermentation (MLF) for Sauvignon blanc. Varietal thiol precursors (3-S-glutathionylhexan-1-ol (GSH-3-SH), 3-S-cysteinylhexan-1-ol (Cys-3-SH)) and varietal thiols derivatised with 4,4′-dithiodipyridine were separately determined using high performance liquid chromatography tandem mass spectrometry. The concentrations of GSH-3-SH and Cys-3-SH in Shiraz grape must and varietal thiols (3-sulfanylhexan-1-ol (3-SH) and 3-sulfanylhexyl acetate (3-SHA)) in Shiraz wine were not significantly affected by grape crushing method, but a shorter skin contact time (3 days) during fermentation significantly increased 3-SH compared to a 6-day treatment. For Sauvignon blanc juice, the evolution profile of GSH-3-SH in the ACE treatment during cold maceration showed an increase from 313 µg/L at the beginning of maceration to the maximum content of 514 µg/L within 9 h, in stark comparison to the conventional crushing treatment, which initially contained 315 µg/L and reached a maximum of 382 µg/L at the end of the cold maceration period (21 h). The evolution profile of Cys-3-SH was similar to that of the GSH-3-SH, yielding 16 µg/L in ACE and 7 µg/L in conventional crushing at the end of maceration. Varietal thiols were determined in Sauvignon blanc wine, including 4-methyl-4-sulfanylpentan-2-one (4-MSP) and enantiomers of 3-SH and 3-SHA, with concentrations of 76–188 ng/L for 4-MSP, 456–864 ng/L and 434 850 ng/L for (3S)-3-SH and (3R)-3-SH, respectively, and 13–29 ng/L and 6–15 ng/L for (3S)-3-SHA and (3R)-3-SHA, respectively. Three-way analysis of variance revealed that their concentrations were significantly affected by the interaction effects of crushing method, yeast strain, and MLF, with ACE significantly increasing their concentrations compared to conventional crushing. Differences were also observed for yeast strain and MLF, with VIN13 yeast strain leading to greater amounts of 3-SH and 3-SHA enantiomers but less 4-MSP than Sauvy, whereas MLF treatment afforded higher amounts of 3-SH enantiomers and 4-MSP but lower levels of 3-SHA enantiomers than those without MLF. The molar conversion yield from the sum of GSH-3-SH and Cys-3-SH to the sum of 3-SH and 3-SHA was relatively low – ranging from 0.65% to 1.01% – and was significantly affected by two-way interaction effects, with VIN13, MLF, and ACE significantly increasing the conversion yield by up to 0.2%.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Poster

Authors

Wang Xingchen1, Capona Dimitra L.1, Roland Aurélie2, Kang Wenyu1 and Jeffery David W.1

1Department of Wine Science and Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia
2SPO, Univ Montpellier, INRAE, Institut Agro.

Contact the author

Keywords

Accentuated cut edges; varietal thiols; precursors; three-way analysis of variance; Sauvignon blanc

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Optical visualization of embolism spread in drought‐induced leaves: revealing differences across three grapevine genotypes

‐Evaluation of xylem embolism is an important challenge in identifying drought tolerant genotypes within the context of climate change.

Digitization for automation–A frost management case study

The need to mitigate the yield impact of Spring frosts in vineyards remains a significant challenge around the world.

Clustering wine aromatic composition of Vitis vinifera grapevine varieties

Climate change is likely to impact wine typicity across the globe, raising concerns in wine regions historically renowned for the quality of their terroir. Amongst several changes in viticultural practices, replacing some of the planting material (i.e clones, rootstocks and cultivars) is thought to be one of the most promising potential levers to be used for adapting to climate change. But the change of cultivars also involves the issue of protecting the region’s wine typicity.

Staying hydrated – not easy when it’s hot!

Heat and drought episodes during the growing season are becoming more frequent and more severe in many of the world’s grape‐growing regions

Predicting oxygen consumption rate by tannins through sweep linear voltammetry and machine learning models

Nowadays, it is well known that oxygen significantly impacts wine quality. The amount of oxygen wine consumes during the winemaking process depends on several factors, such as storage conditions, the number of rackings, the materials used for aging, and the type of closure chosen for bottling.