IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Evaluation of “Accentuated cut edges” technique on the release of varietal thiols and their precursors in Shiraz and Sauvignon blanc wine production

Evaluation of “Accentuated cut edges” technique on the release of varietal thiols and their precursors in Shiraz and Sauvignon blanc wine production

Abstract

Accentuated cut edges (ACE) is a novel grape crushing technique used sequentially after a conventional crusher to increase the extraction rate and content of polyphenolics, as shown for Pinot noir wine. This inspired us to apply the technique during Shiraz and Sauvignon blanc winemaking, primarily to assess its impact on the extraction of varietal thiol precursors in grape must/juice and formation of varietal thiols in the resultant wines. Other variables were jointly studied, including skin contact time and water addition to Shiraz grape must, and yeast strain and malolactic fermentation (MLF) for Sauvignon blanc. Varietal thiol precursors (3-S-glutathionylhexan-1-ol (GSH-3-SH), 3-S-cysteinylhexan-1-ol (Cys-3-SH)) and varietal thiols derivatised with 4,4′-dithiodipyridine were separately determined using high performance liquid chromatography tandem mass spectrometry. The concentrations of GSH-3-SH and Cys-3-SH in Shiraz grape must and varietal thiols (3-sulfanylhexan-1-ol (3-SH) and 3-sulfanylhexyl acetate (3-SHA)) in Shiraz wine were not significantly affected by grape crushing method, but a shorter skin contact time (3 days) during fermentation significantly increased 3-SH compared to a 6-day treatment. For Sauvignon blanc juice, the evolution profile of GSH-3-SH in the ACE treatment during cold maceration showed an increase from 313 µg/L at the beginning of maceration to the maximum content of 514 µg/L within 9 h, in stark comparison to the conventional crushing treatment, which initially contained 315 µg/L and reached a maximum of 382 µg/L at the end of the cold maceration period (21 h). The evolution profile of Cys-3-SH was similar to that of the GSH-3-SH, yielding 16 µg/L in ACE and 7 µg/L in conventional crushing at the end of maceration. Varietal thiols were determined in Sauvignon blanc wine, including 4-methyl-4-sulfanylpentan-2-one (4-MSP) and enantiomers of 3-SH and 3-SHA, with concentrations of 76–188 ng/L for 4-MSP, 456–864 ng/L and 434 850 ng/L for (3S)-3-SH and (3R)-3-SH, respectively, and 13–29 ng/L and 6–15 ng/L for (3S)-3-SHA and (3R)-3-SHA, respectively. Three-way analysis of variance revealed that their concentrations were significantly affected by the interaction effects of crushing method, yeast strain, and MLF, with ACE significantly increasing their concentrations compared to conventional crushing. Differences were also observed for yeast strain and MLF, with VIN13 yeast strain leading to greater amounts of 3-SH and 3-SHA enantiomers but less 4-MSP than Sauvy, whereas MLF treatment afforded higher amounts of 3-SH enantiomers and 4-MSP but lower levels of 3-SHA enantiomers than those without MLF. The molar conversion yield from the sum of GSH-3-SH and Cys-3-SH to the sum of 3-SH and 3-SHA was relatively low – ranging from 0.65% to 1.01% – and was significantly affected by two-way interaction effects, with VIN13, MLF, and ACE significantly increasing the conversion yield by up to 0.2%.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Poster

Authors

Wang Xingchen1, Capona Dimitra L.1, Roland Aurélie2, Kang Wenyu1 and Jeffery David W.1

1Department of Wine Science and Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia
2SPO, Univ Montpellier, INRAE, Institut Agro.

Contact the author

Keywords

Accentuated cut edges; varietal thiols; precursors; three-way analysis of variance; Sauvignon blanc

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Temperature variability inside a wine production area and its effect on vine phenology and grape ripening. An example from the Saint-Emilion-Pomerol

AIM: the aim of this study was to develop a method for fine-scale temperature zoning. The effect of temperature variability on vine phenology and grape composition was assessed in the production area of Saint-Emilion

Terpenoids and norisoprenoids in italian red wines

AIM Terpene compounds are associated with floral notes and are characteristic of aromatic grape varieties such as Muscat (Jackson, 2008). They are generally considered to potentially contribute to the aroma of white wines. However, there is a growing interest towards the potential contribution of terpene compounds to the aroma of red wines. The aim of this work was to investigate the occurrence of different terpenes in red wines from Italian varieties. METHODS For this study wines from 11 mono-varietal Italian red wines from 12 regions were used (19 Sangiovese, 11 Nebbiolo, 10 Aglianico, 11 Primitivo, 10 Raboso del Piave, 9 Cannonau, 11 Teroldego, 3 Nerello, 9 Montepulciano, 7 Corvina). All samples were from vintage 2016 and none of them had been in contact with wood. A total of 19 terpenes and 7 norisoprenoids were analysed by mean of SPME-GC-MS analysis using a DVB-CAR-PDMS fiber. The wines were collected in the framework of the activities of the D-Wines (Diversity of Italian wines) project.

The vineyard of the future: producing more with less  

similar to other agricultural producers, grape growers face increasing pressure to improve productivity and production efficiency while reducing their environmental impact. Threats due to extreme climate events, as well as the uncertainty of available water and labor, provide significant challenges to the future of grape production. This presentation will provide an integrated overview of the tools and technologies being developed to address these issues and to help growers manage vineyards in the future, including vineyard design, remote and proximal sensing, automation, data management and decision support systems, and germplsm improvement. The potential impact of these advancements on vineyard productivity, fruit quality, and sustainability will be discussed.

Zonificación climática de las D.O. Rueda y Toro y vinos de la tierra de medina del campo

La producción vitícola es el resultado de una serie de factores influyentes (variedad, patron) dentro de un medio ecológico­-climatico-edafico, en el que se interactua por medio de técnicas de cultivo adecuadas.

Generation and characterization of a training population in Vitis vinifera for enhanced genomic selection

Context and purpose of the study. Modern viticulture is facing significant challenges due to global climate changes, spanning from extreme heat spells and water scarcity to the acceleration of grapevine’s phenological development with important consequences from budbreak to harvest.