IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Trace-level analysis of phosphonate in wine and must by ion chromatography with inductively coupled plasma mass spectrometry (IC-ICP-MS).

Trace-level analysis of phosphonate in wine and must by ion chromatography with inductively coupled plasma mass spectrometry (IC-ICP-MS).

Abstract

Phosphonic acid and especially potassium dihydrogen phosphonate are widely used to restrain the ubiquitous pressure of grapevine downy mildew in viticulture. Nevertheless, phosphonic acid and its derivatives have been banned in organic viticulture in October 2013, because they have been classified as plant protection products since then. This development has fueled the need for analytical methods for sensitive phosphonate determination. Current routine analysis of phosphonic acid is usually performed by ion chromatography with conductivity detection (IC-CD), which is not always sufficiently sensitive and specific. Furthermore, the quick polar pesticide evaluation method (QuPPe) of the European Reference Laboratory in combination with LC-MS/MS is well established for most polar pesticides. However, in case of phosphonic acid, issues regarding mass transitions and poor chromatographic resolution, can occur. Therefore, we sought to evaluate a new method based on IC separation coupled with ICP-MS detection as an alternative for previously described methods. By coupling an ICP-MS to an IC, non-phosphorus-containing, coeluting substances can be eliminated and thus a higher specificity can be achieved. Hence, this contribution highlights the development and validation of an IC-ICP-MS based workflow for the robust, sensitive and reliable determination of phosphonic acid at low µg/kg levels in wine and must. This method is then compared to the previous detection by CD and the advantages and disadvantages of each are briefly described. Quantification limits are 20 µg/kg or lower with % RSDs typically

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Poster

Authors

Otto Sören1, May Bianca2 and Schweiggert Ralf1

1Department of Beverage Research, Chair Analysis and Technology of Plant-based Foods, Geisenheim University
2Department of Enology, Chair Wine and Beverage Chemistry, Geisenheim University

Contact the author

Keywords

polar pesticides, IC-ICP-MS, IC-CD, phosphonic acid, organic viticulture

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Discovering the process of noble rot: fungal ecology of grape berries during the noble rot transformation in different vineyards of the Tokaj wine region

Botrytis cinerea, a well-known grapevine pathogen, has more than 1200 host plants causing grey rot in grapevine berries. However, it can also result in a desirable phenomenon called noble rot under specific microclimate conditions. An extraordinary demonstration of this natural process can be observed in the creation of aszú wines within Hungary’s Tokaj wine region. Beside B. cinerea other fungi and yeasts are involved in the secondary metabolic development of the grape berry which contributes to the sensory and analytical characterization of noble rot wines.

Contaminants in Vitis vinifera L. products: levels and potential risks for human health

Vitis vinifera L. derivatives are susceptible to contamination by biological agents (e.g., bacteria, viruses, fungi), and chemical agents (e.g., heavy metals, persistent organic pollutants).

Application of the simplified quality bioclimatical index of Fregoni: suggestion of using its evolution curve

Les indices bioclimatiques constituent un bon outil pour piloter le développement vitivinicole dans une région précise

Influence of different strains of lab on quality of catarratto wine produced in sicily

AIM: Lactiplantibacillus plantarum and Oenococcus oeni species is worldwide used as starter for malolactic fermentation [1, 2].

Effect of different plant fibers on the elimination of undesirable compounds in red wine. Correlation with its polysaccharide composition

The presence of undesirable compounds in wines, such as OTA, biogenic amines and pesticides residues, affects wine quality and can cause health problems for the consumer. The main tool that a winemaker has to reduce their content in the wine is fining. However, some of the fining agents commonly used in the winery can cause allergies or even increase the protein content in the wine, increasing the turbidity. To avoid these problems, the use of plant fibers may be an alternative, such as those from grape pomace[1] or other plant origins.