IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Trace-level analysis of phosphonate in wine and must by ion chromatography with inductively coupled plasma mass spectrometry (IC-ICP-MS).

Trace-level analysis of phosphonate in wine and must by ion chromatography with inductively coupled plasma mass spectrometry (IC-ICP-MS).

Abstract

Phosphonic acid and especially potassium dihydrogen phosphonate are widely used to restrain the ubiquitous pressure of grapevine downy mildew in viticulture. Nevertheless, phosphonic acid and its derivatives have been banned in organic viticulture in October 2013, because they have been classified as plant protection products since then. This development has fueled the need for analytical methods for sensitive phosphonate determination. Current routine analysis of phosphonic acid is usually performed by ion chromatography with conductivity detection (IC-CD), which is not always sufficiently sensitive and specific. Furthermore, the quick polar pesticide evaluation method (QuPPe) of the European Reference Laboratory in combination with LC-MS/MS is well established for most polar pesticides. However, in case of phosphonic acid, issues regarding mass transitions and poor chromatographic resolution, can occur. Therefore, we sought to evaluate a new method based on IC separation coupled with ICP-MS detection as an alternative for previously described methods. By coupling an ICP-MS to an IC, non-phosphorus-containing, coeluting substances can be eliminated and thus a higher specificity can be achieved. Hence, this contribution highlights the development and validation of an IC-ICP-MS based workflow for the robust, sensitive and reliable determination of phosphonic acid at low µg/kg levels in wine and must. This method is then compared to the previous detection by CD and the advantages and disadvantages of each are briefly described. Quantification limits are 20 µg/kg or lower with % RSDs typically

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Poster

Authors

Otto Sören1, May Bianca2 and Schweiggert Ralf1

1Department of Beverage Research, Chair Analysis and Technology of Plant-based Foods, Geisenheim University
2Department of Enology, Chair Wine and Beverage Chemistry, Geisenheim University

Contact the author

Keywords

polar pesticides, IC-ICP-MS, IC-CD, phosphonic acid, organic viticulture

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Modeling from functioning of a grape berry to the whole plant

Grape quality is a complex trait that mainly refers to berry chemical composition, including sugars, organic acids, phenolics, aroma and aroma precursor compounds.

CHARACTERIZATION OF THE AROMA PROFILE OF COMMERCIAL PROSECCO SPARKLING WINES

The typicality of a wine, as well as its aromatic identity, are attributes that are highly sought after and requested by the current market. It is therefore of considerable technological interest to investigate the aromatic aspects of specific wines and to identify the odorous substances involved.In this thesis work, the characterization of the aromatic composition of Prosecco wines available on the market with a price range between 7 and 13 euros was carried out. These wines came from three different areas of origin such as Valdobbiadene, Asolo and Treviso.

The role of NAC61 transcription factor in the regulation of berry ripening progression 

The undergoing global warming scenario is affecting grapevines phenology, including the timing of berry ripening and harvest date, negatively impacting production and quality. This work reports the crucial role of NAC61, a grapevine NAC transcription factor, in regulating metabolic processes occurring from the onset of ripening onwards. NAC61 high confidence targets mainly represent genes acting on stilbene biosynthesis and regulation, and in osmotic and oxidative/biotic stress-related responses. The direct regulation of the stilbene synthase regulator MYB14, the osmotic stress-related gene DHN1b, and the Botrytis cinerea susceptibility gene WRKY52, were all further validated.

Caractéristiques physiques et agronomiques des principaux terroirs viticoles de l’Anjou (France). Conséquences pour la viticulture

Une étude conduite dans le cœur du vignoble A.O.C. angevin, sur une surface d’environ 30.000 ha, a permis de caractériser et cartographier finement (levé au 1/12.500)

Vers des systèmes viticoles économes en pesticide. Étude du réseau DEPHY-Vigne

Dans le cadre de TerclimPro 2025, Esther Fouillet a présenté un article IVES Technical Reviews. Retrouvez la présentation ci-dessous ainsi que l’article associé : https://ives-technicalreviews.eu/article/view/8318