IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Trace-level analysis of phosphonate in wine and must by ion chromatography with inductively coupled plasma mass spectrometry (IC-ICP-MS).

Trace-level analysis of phosphonate in wine and must by ion chromatography with inductively coupled plasma mass spectrometry (IC-ICP-MS).

Abstract

Phosphonic acid and especially potassium dihydrogen phosphonate are widely used to restrain the ubiquitous pressure of grapevine downy mildew in viticulture. Nevertheless, phosphonic acid and its derivatives have been banned in organic viticulture in October 2013, because they have been classified as plant protection products since then. This development has fueled the need for analytical methods for sensitive phosphonate determination. Current routine analysis of phosphonic acid is usually performed by ion chromatography with conductivity detection (IC-CD), which is not always sufficiently sensitive and specific. Furthermore, the quick polar pesticide evaluation method (QuPPe) of the European Reference Laboratory in combination with LC-MS/MS is well established for most polar pesticides. However, in case of phosphonic acid, issues regarding mass transitions and poor chromatographic resolution, can occur. Therefore, we sought to evaluate a new method based on IC separation coupled with ICP-MS detection as an alternative for previously described methods. By coupling an ICP-MS to an IC, non-phosphorus-containing, coeluting substances can be eliminated and thus a higher specificity can be achieved. Hence, this contribution highlights the development and validation of an IC-ICP-MS based workflow for the robust, sensitive and reliable determination of phosphonic acid at low µg/kg levels in wine and must. This method is then compared to the previous detection by CD and the advantages and disadvantages of each are briefly described. Quantification limits are 20 µg/kg or lower with % RSDs typically

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Poster

Authors

Otto Sören1, May Bianca2 and Schweiggert Ralf1

1Department of Beverage Research, Chair Analysis and Technology of Plant-based Foods, Geisenheim University
2Department of Enology, Chair Wine and Beverage Chemistry, Geisenheim University

Contact the author

Keywords

polar pesticides, IC-ICP-MS, IC-CD, phosphonic acid, organic viticulture

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Investigating winemaking techniques for resistant varieties: the impact of prefermentative steps on must quality

Resistant grape varieties are gaining interest in viticulture due to their resistance to diseases, allowing to drastically reduces pesticides in viticulture [1].

Qualitative and productive characterization of a minority variety: ‘Branco lexítimo’ in DO Ribeira Sacra (Spain)

The actual climate changes, together with the strong regulation of the European Union and Spanish government, in search of sustainable viticulture, have forced the recovery of minority varieties, expanding the range of grape varieties, as well as the possible development of wines with unique profiles. In the Ribeira Sacra DO (Spain), a comparative study of the agronomic and qualitative behavior of the ‘Branco lexítimo’ variety has been carried out, compared to the majority white variety in the DO: ‘Godello’, located in the same study plot, with identic soil and climatic conditions. The study contemplated the analysis of phenology and leaf water potential, as well as the productive results and the analysis of the must quality, during four seasons: 2018 – 2021.

Use of mathematical modelling and multivariate statistical process control during alcoholic fermentation of red wine

Cyberphysical systems can be seen in the wine industry in the form of precision oenology. Currently, limitations exist with established infrared chemometric models and first principle mathematical models in that they require a high degree of sample preparation, making it inappropriate for use in-line,

Investigating the impact of grape exposure and UV radiations on rotundone in Vitis vinifera L. Tardif grapes under field trial conditions

Rotundone is the main aroma compound responsible for peppery notes in wines whose biosynthesis is negatively affected by heat and drought. Through the alteration of precipitation regime and the increase in temperature during maturation, climate change is expected to affect wine peppery typicality. In this context there is a demand for developing sustainable viticultural strategies to enhance rotundone accumulation or limit its degradation. It was recently proposed that ultraviolet (UV) radiations could stimulate rotundone production. The aim of this study was to investigate under field trial conditions the impact of grape exposure and UV treatments on rotundone in Vitis vinifera L. Tardif, an almost extinct grape variety from south-west France that can express particularly high rotundone levels. Four different treatments were compared in 2021 to a control treatment using a randomised complete block design with three replications per treatment. Grape exposure was manipulated through early or late defoliation. Leaf and laterals shoots were removed at Eichorn Lorenz growth stages 32 or 34 on the morning-sun side of the canopy. During grape maturation, UV radiations were either reduced by 99% by installing UV radiation-shielding sheets, or applied four times using the Boxilumix™ non thermal device (Asclepios Tech, Tournefeuille) with the aim of activating plant signalling pathway. Loggers displayed in solar radiation shields were used to assess the effect of such shielding sheets on air temperature within the bunch zone. The composition of grapes subjected to these treatments will be soon analysed for their rotundone content and basic classical laboratory analyses. Grapes will be harvested to elaborate wines under standardized small-scale vinification conditions (60kg) that will be assessed by a trained sensory panel.

Effect of ozone application for low-input postharvest dehydration of wine grapes 

The postharvest dehydration of grapes is a traditional practice to obtain wines with unique traits (e.g. sweet, dry/reinforced). The modern facilities (dehydrating rooms) used for this purpose are equipped with systems for artificially controlling the inside environment parameters, to obtain the desired dehydration kinetic and preserve the grapes from grey mold (Botrytis cinerea) infection, However, the conditioning systems are extremely energy-demanding and the identification and practical applications of solutions effective in controlling/reducing the postharvest decay would reduce the costs of the operation of the dehydration facilities. To this end, we explored the potential of ozone-based treatments on harvested grapes and preliminarily tested if the treatment could impact the normal behavior and metabolism of grapes during the traditionally slow dehydration practice.