terclim by ICS banner
IVES 9 IVES Conference Series 9 Effect of ozone application for low-input postharvest dehydration of wine grapes 

Effect of ozone application for low-input postharvest dehydration of wine grapes 

Abstract

The postharvest dehydration of grapes is a traditional practice to obtain wines with unique traits (e.g. sweet, dry/reinforced). The modern facilities (dehydrating rooms) used for this purpose are equipped with systems for artificially controlling the inside environment parameters, to obtain the desired dehydration kinetic and preserve the grapes from grey mold (Botrytis cinerea) infection, However, the conditioning systems are extremely energy-demanding and the identification and practical applications of solutions effective in controlling/reducing the postharvest decay would reduce the costs of the operation of the dehydration facilities. To this end, we explored the potential of ozone-based treatments on harvested grapes and preliminarily tested if the treatment could impact the normal behavior and metabolism of grapes during the traditionally slow dehydration practice. Harvested grapes of Corvina and Sangiovese cultivars were treated with ozone (gas or ozonated water) and partially dehydrated in a dedicated room equipped with a system for the control of internal temperature and humidity. Weak differences regarding the dehydration kinetics and the main technological parameter dynamics were detected between treated and untreated grapes. Analyses of phenolic and other non-volatile metabolites, as well as of the expression of key genes governing the grape berry postharvest metabolism are underway. Overall, the results will shed light on grape physiological response to ozone during the postharvest dehydration process. Sanitizing grapes using ozone will highly increase the capacity of grapes to withstand conditions of higher temperature and humidity reducing spoilage and production losses.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Ron Shmuleviz1, Luca Cattaneo1, Pietro Emilio Nepi2, Eleonora Littarru2, Stefano Brizzolara2, Pietro Tonutti2, Marianna Fasoli1, Giovanni Battista Tornielli1,3*

1 Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
2 Crop Science Research Center, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy  
3 Current address: Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Viale dell’Università 16, 35020 Legnaro (PD) Italy

Contact the author*

Keywords

Vitis vinifera, postharvest dehydration, ozone, grape berry, metabolism

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Quantification of newly identified C8 aroma compounds in musts and wines as an analytical tool for the early detection of Fresh Mushroom Off-Flavor

The Fresh Mushroom Off-Flavor (FMOff) is a concerning undesirable aroma in wine specific of certain vintages, characterized by a typical button mushroom aroma. The appearance of this off-flavor is linked to the presence of certain fungus on the grape [1-3].

Characterization of vineyard sites for quality wine production using meteorological, soil chemical and physical data

The quality of grapevines measured by yield and must density in the northern part of Europe -conditions can be characterized as a type of “cool climate” – vary strongly from year to year and from one production site to another, i.e. différences in must densities can range from 30 to 50 °Oe. An explanation may be changes of weather conditions during critical developmental stages of the grapevines (2, 3, 5). These can be categorized as “macro climatic” influences.

Culturable microbial communities associated with the grapevine soil in vineyards of La Rioja, Spain

The definition of soil health is complex due to the lack of agreement on adequate indicators and to the high variability of global soils. Nevertheless, it has been widely used as synonymous of soil quality for more than one decade, and there is a consensus warning of scientists that soil quality and biodiversity loss are occurring due to the traditional intensive agricultural practices.
In this work we monitored a set of soil parameters, both physicochemical and microbiological, in an experimental vineyard under three different management and land use systems: a) addition of external organic matter (EOM) to tilled soil; b) no tillage and plant cover between grapevine rows, and c) grapevines planted in rows running down the slope and tilled soil.

The limonene-derived mint aroma compounds in red wines. Recent advances on analytical, chemical aspects and sensory aspects

In recent years, the ageing bouquet of red Bordeaux wines has been partially unveiled by a chemical and sensory point of view1–3. Minty and fresh notes were found to play a key role in the definition of this complex concept, moreover the freshness dimension in fine aged red wines plays an important role in typicity judgement by wine professionals

Timing of leaf removal effects on vitis vinifera L. Cv. Grenache differed on two contrasting seasons

Warming trends over the winegrowing regions lead to an advance of grapevine phenology, diminution of yield and increased sugar content and must pH with a lower polyphenol content, especially anthocyanins. Canopy management practices are applied to control the source sink balance and improve the cluster microclimate to enhance berry composition. We hyphothesized that an early leaf removal might promote a delayed ripening through severe defoliation after fruitset; whereas, a late leaf removal at mid-ripening would reduce sugar accumulation.