terclim by ICS banner
IVES 9 IVES Conference Series 9 Effect of ozone application for low-input postharvest dehydration of wine grapes 

Effect of ozone application for low-input postharvest dehydration of wine grapes 

Abstract

The postharvest dehydration of grapes is a traditional practice to obtain wines with unique traits (e.g. sweet, dry/reinforced). The modern facilities (dehydrating rooms) used for this purpose are equipped with systems for artificially controlling the inside environment parameters, to obtain the desired dehydration kinetic and preserve the grapes from grey mold (Botrytis cinerea) infection, However, the conditioning systems are extremely energy-demanding and the identification and practical applications of solutions effective in controlling/reducing the postharvest decay would reduce the costs of the operation of the dehydration facilities. To this end, we explored the potential of ozone-based treatments on harvested grapes and preliminarily tested if the treatment could impact the normal behavior and metabolism of grapes during the traditionally slow dehydration practice. Harvested grapes of Corvina and Sangiovese cultivars were treated with ozone (gas or ozonated water) and partially dehydrated in a dedicated room equipped with a system for the control of internal temperature and humidity. Weak differences regarding the dehydration kinetics and the main technological parameter dynamics were detected between treated and untreated grapes. Analyses of phenolic and other non-volatile metabolites, as well as of the expression of key genes governing the grape berry postharvest metabolism are underway. Overall, the results will shed light on grape physiological response to ozone during the postharvest dehydration process. Sanitizing grapes using ozone will highly increase the capacity of grapes to withstand conditions of higher temperature and humidity reducing spoilage and production losses.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Ron Shmuleviz1, Luca Cattaneo1, Pietro Emilio Nepi2, Eleonora Littarru2, Stefano Brizzolara2, Pietro Tonutti2, Marianna Fasoli1, Giovanni Battista Tornielli1,3*

1 Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
2 Crop Science Research Center, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy  
3 Current address: Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Viale dell’Università 16, 35020 Legnaro (PD) Italy

Contact the author*

Keywords

Vitis vinifera, postharvest dehydration, ozone, grape berry, metabolism

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Arsenic in soil, leaves, grapes and wines

The presence of arsenic in food and beverages creates concern because of the toxicity of this element, classified as carcinogenic in humans. The arsenic concentration in soil, vine leaves and berries

Barrels ad-hoc: Spanish oak wood classification by NIRs 

The wooden barrel is a key factor in enology, since wine chemical composition and sensory properties changes significantly in contact with the barrel[1]. Today’s highly competitive market constantly demands new differentiated products and wineries search innovations continuously.
Wood selection is crucial: barrels stability to keep constant their contribution and the result on products, and additional and differentiated wood contributions to impact their new products. Oak wood selection has traditionally been carried out using parameters such as specie, location and grain, however, it goes one step further nowadays. Large cooperage work with non-destructive techniques that allow classifying oak wood quickly and easily according to their organoleptic contribution[2].

Effects of heat and water stress on grapevine health: primary and secondary metabolism

Grapevine resilience to climate change has become one of the most pressing topics in the Viticulture & Enology field. Vineyard health demands understanding the mechanisms that explain the direct and indirect interactions between environmental stressors. The current climate change scenario, where drought and heat-wave are more frequent and intense, strongly demands improving our knowledge of environmental stresses. During a heatwave, the ambient temperature rises above the plant’s average tolerance threshold and, generally, above 35 oC plant’s adaptation to heat stress is activated.

Sensory impact of sunburn in white wine and mitigation of climateinduced off-flavours by defoliation and application of reflecting particles on grapes

Climate change is a great environmental challenge with large impact on the Wine and sprakling wine industry. Heat waves and dryness cause frequent sunburn damage in white grapes

Influence of spraying of copper fungicides on physiological parameters of Vitis vinifera L. Cv. ‘Merlot’

Vine downy mildew is one of the most frequent diseases in intensive vineyards. Bordeaux mixture (B.m.), in order to control the disease has been applied onto vineyards since the end of the 19th century. The intensive use of Cu-fungicides could influence the physiology of grapevine. It is also possible that high amounts of foliar Cu sprays trigger stress responses in vine leaves.