IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Grape stems as preservative in Tempranillo wine

Grape stems as preservative in Tempranillo wine

Abstract

SO2 is the most widely used preservative in the wine industry. However, there are several drawbacks related with the use of SO2 in wine such as its toxicity and the unpleasant odor in case of excess. These reasons justify the importance of searching alternatives to reduce or eliminate this preservative from wine. The grapes stems are discarded early on in the winemaking process, in spite of containing large amounts of polyphenolic compounds with antioxidant activity. The aim of this work was to determine whether the ground stem and its extract had the potential to replace SO2 in wine. For this, five Tempranillo red wines were made: a positive control with SO2 (60 mg/L); a negative control without any preservatives; a wine with Tempranillo stem extract (200 mg/L); a wine with a combination of Tempranillo stem extract (100 mg/L) and SO2 (20 mg/L), and a wine with ground Tempranillo stem (310 mg/L). After a year of bottle storage under cellar conditions, the wines with different treatments had similar values for antioxidant capacity (ABTS), total polyphenolic or total anthocyanin content. The most abundant individual polyphenols found in all samples were gallic and caftaric acids, catechin and malvidin-3-glucoside. The evolution of all these compounds throughout the winemaking process followed the literature. Positive control wine had a higher concentration of caftaric acid. The concentrations of gallic acid, catechin and malvidin-3-glucoside were more homogenous among treatments. The sensory analysis by a triangular test showed that the positive control wine was only perceptibly different from the Tempranillo extract wine and the negative control at 99% confidence level. Tempranillo stem wine only differed from the wine that combined SO2 and extract. Negative control wine differed from all treatments, except Tempranillo stem. This may indicate both the Tempranillo extract and ground stem may be good total or partial substitutes for SO2 as an antioxidant in red wines.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Poster

Authors

Nogueira Danielle1, Jiménez-Moreno Nerea1, Esparza Irene1 and Ancín-Azpilicueta Carmen1

1Public University of Navarre

Contact the author

Keywords

antioxidants, by-products, sulfite replacement

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Dynamics of Saccharomyces cerevisiae population in spontaneous fermentations from Granxa D’Outeiro terroir (DOP Ribeiro, NW Spain)

Granxa D’Outeiro is a recovered ancient vineyard located in the heart of DOP Ribeiro, where traditional white grapevine varieties are growing under sustainable management. Spontaneous fermentations using grape must from Treixadura, Albariño, Lado, Godello, and Loureira varieties were carried out at experimental winery of Evega. Yeasts were isolated from must and at different stages of fermentation. Those colonies belonging to Saccharomyces cerevisiae were characterized at strain level by mDNA-RFLPs.

Counting grape bunches using deep learning under different fruit and leaf occlusion conditions

Yield estimation is very important for the wine industry since provides useful information for vineyard and winery management. The early yield estimation of the grapevine provides information to winegrowers in making management decisions to achieve a better quantity and quality of grapes. In general, yield forecasts are based on destructive sampling of bunches and manual counting of berries per bunch and bunches per vine.

Enhancing sustainability in winemaking: the role of PIWI in South Tyrol

The adoption of PIWI (Pilzwiderstandsfähige) grape cultivars, bred for resistance to fungal diseases, is a transformative step towards sustainable winemaking.

Grapevine under nutrient stress: exploring the adaptive mechanisms in response to iron deficiency conditions

In plants, stress due to nutrient deficiency can significantly impair their development and productivity.

Hyperspectral imaging and machine learning for monitoring grapevine physiology

Rootstocks are gaining importance in viticulture as a strategy to combat abiotic challenges, as well as enhancing scion physiology and attributes. Therefore, understanding how the rootstock affects photosynthesis is insightful for genetic improvement of either genotype in the grafted grapevines. Photosynthetic parameters such as maximum rate of carboxylation of RuBP (Vcmax) and the maximum rate of electron transport driving RuBP regeneration (Jmax) have been identified as ideal targets for breeding and genetic studies. However, techniques used to directly measure these photosynthetic parameters are limited to the single leaf level and are time-consuming measurements.