IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 An Ag+ SPE method combined with Deans’ switch heart-cutting MDGC–MS/Olfactometry approach for identifying unknown volatile thiols in wine

An Ag+ SPE method combined with Deans’ switch heart-cutting MDGC–MS/Olfactometry approach for identifying unknown volatile thiols in wine

Abstract

Wine aroma is a crucial quality criterion. A multitude of volatile compounds have been identified and correlated to the aroma attributes perceived in wine. Volatile thiols are a category of volatile sulfur compounds that are well-recognized as potent aroma-impacting odorants contributing to various aroma attributes of many wines because of their low odor detection thresholds (ng/L). However, volatile thiols are highly reactive and generally present at ultra-trace concentrations (ng/L) in wines, causing major analytical difficulties. For more than two decades, the identifications of new volatile thiols were nearly exclusively achieved by the use of organomercuric compounds for thiol extraction, followed by conventional gas chromatography and mass spectrometry/olfactometry (GC–MS/O) for chromatographic separation, odorous zone profiling, and MS detection. However, such analytical protocols required the use of highly toxic organomercuric chemicals and are often laborious. Meanwhile, olfactometry data of other unknown thiol odorous zones has been reported but their identities were not pursued.
This work focused on the aroma of premium red wines and aimed to identify unknown volatile thiols. First, we developed a silver ion solid-phase extraction (Ag+ SPE) method for thiol isolation. Ag+ SPE cartridge selectivity, cartridge wettability, reservoir material, and elution reagent were evaluated. The developed Ag+ SPE method was safe, simple, scalable, selective, and artefact resistant, suitable for qualitative identification tasks. Low thermal mass (LTM) Deans’ switch (DS) heart-cutting multidimensional GC–MS/O (H/C MDGC–MS/O) was optimized for its performance using three model volatile thiol analytes. Significant impacts of instrument parameters including main host oven temperature, H/C width, and cryogenic trapping on the separation and detection were observed. Main host oven at high temperature was required to maintain flow balance for H/C operation. Narrow H/C width was selected to avoid irregular chromatographic behavior. Cryogenic trapping at the optimal temperature was needed to effectively capture the H/C effluent at the inlet of second column and to significantly enhance peak detection. The development of the Ag+ SPE H/C MDGC–MS/O protocol was applied to screen a selection of several premium Bordeaux red wines presenting a bouquet with intense empyreumatic nuances. In selected wines, a number of odorous zones with such aroma descriptors were characterized. Supported by olfactometric results, retention data, and corresponding mass spectra, the identification of odorous thiols that were not previously reported in wine was described. The identification of unknown thiols expands our understanding of the volatile molecular markers contributing to the aroma quality of premium wines

DOI:

Publication date: June 22, 2022

Issue: IVAS 2022

Type: Article

Authors

Chen Liang¹* and Darriet Philippe¹

¹Univ. Bordeaux, INRAE, Bordeaux INP, UMR1366 Œnologie, ISVV, F-33140 Villenave d’Ornon, France

Contact the author

Keywords

red wine, aroma, volatile thiols, extraction, identification

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Impacts on water availability for vitiviniculture worldwide using different potential evapotranspiration methods

Beyond the sole warming globally perceived and monitored, climate change impacts water availability. Increasing heatwaves frequency observed during the last decades

INFLUENCE OF WINEMAKING VARIABLES AND VINEYARD LOCATIONS ON CHEMICAL AND SENSORY PROFILES OF SOUTH TYROLEAN PINOT BLANC

Pinot Blanc, an important grape variety grown in some mountain areas of Northern Italy such as South Tyrol over the last decades, with its cultivation covering 10.3% of the total vineyards, has compatible climatic conditions (e.g. heat requirements) which are normally found in the geographical areas of the mountain viticulture [1,2,3,4]. Climatic changes are hastening the growth of this variety at higher elevations, particularly for the production of high quality wine.

Underpinning terroir with data: rethinking the zoning paradigm

Agriculture, natural resource management and the production and sale of products such as wine are increasingly data-driven activities. Thus, the use of remote and proximal crop and soil sensors to aid management decisions is becoming commonplace and ‘Agtech’ is proliferating commercially; mapping, underpinned by geographical information systems and complex methods of spatial analysis, is widely used. Likewise, the chemical and sensory analysis of wines draws on multivariate statistics; the efficient winery intake of grapes, subsequent production of wines and their delivery to markets relies on logistics; whilst the sales and marketing of wines is increasingly driven by artificial intelligence linked to the recorded purchasing behaviour of consumers. In brief, there is data everywhere!

Opinions will vary on whether these developments are a good thing. Those concerned with the ‘mystique’ of wine, or the historical aspects of terroir and its preservation, may find them confronting. In contrast, they offer an opportunity to those interested in the biophysical elements of terroir, and efforts aimed at better understanding how these impact on vineyard performance and the sensory attributes of resultant wines. At the previous Terroir Congress, we demonstrated the potential of analytical methods used at the within-vineyard scale in the development of Precision Viticulture, in contributing to a quantitative understanding of regional terroir. For this conference, we take this approach forward with examples from contrasting locations in both the northern and southern hemispheres. We show how, by focussing on the vineyards within winegrowing regions, as opposed to all of the land within those regions, we might move towards a more robust terroir zoning than one derived from a mixture of history, thematic mapping, heuristics and the whims of marketers. Aside from providing improved understanding by underpinning terroir with data, such methods should also promote improved management of the entire wine value chain.

Successive surveys to define practices and decision process of winegrowers to produce “Vins de Pays Charentais” in the Cognac firewater vineyard area

Le vin est un des produits finis que l’on obtient à partir de raisins. La vigne réagit à de nombreux facteurs environnementaux et son comportement est directement influencé par les pratiques culturales

EFFECTS OF BIODYNAMIC VINEYARD MANAGEMENT ON GRAPE RIPENING MECHANISMS

Biodynamic agriculture, founded in 1924 by Rudolph Steiner, is a form of organic agriculture. Through a holistic approach, biodynamic agriculture seeks to preserve the diversity of agriculture and the existing interactions between the mineral world and the different components of the organic world. Biodynamic grape production involves the use of composts, herbal teas and mineral preparations such as 500, 501 and CBMT.
Several scientific studies have provided evidence on the effects of biodynamic farming on the soil, the plant and the wine. Numerous empirical opinions of wine growers support the existence of differences brought by such a management.