IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 An Ag+ SPE method combined with Deans’ switch heart-cutting MDGC–MS/Olfactometry approach for identifying unknown volatile thiols in wine

An Ag+ SPE method combined with Deans’ switch heart-cutting MDGC–MS/Olfactometry approach for identifying unknown volatile thiols in wine

Abstract

Wine aroma is a crucial quality criterion. A multitude of volatile compounds have been identified and correlated to the aroma attributes perceived in wine. Volatile thiols are a category of volatile sulfur compounds that are well-recognized as potent aroma-impacting odorants contributing to various aroma attributes of many wines because of their low odor detection thresholds (ng/L). However, volatile thiols are highly reactive and generally present at ultra-trace concentrations (ng/L) in wines, causing major analytical difficulties. For more than two decades, the identifications of new volatile thiols were nearly exclusively achieved by the use of organomercuric compounds for thiol extraction, followed by conventional gas chromatography and mass spectrometry/olfactometry (GC–MS/O) for chromatographic separation, odorous zone profiling, and MS detection. However, such analytical protocols required the use of highly toxic organomercuric chemicals and are often laborious. Meanwhile, olfactometry data of other unknown thiol odorous zones has been reported but their identities were not pursued.
This work focused on the aroma of premium red wines and aimed to identify unknown volatile thiols. First, we developed a silver ion solid-phase extraction (Ag+ SPE) method for thiol isolation. Ag+ SPE cartridge selectivity, cartridge wettability, reservoir material, and elution reagent were evaluated. The developed Ag+ SPE method was safe, simple, scalable, selective, and artefact resistant, suitable for qualitative identification tasks. Low thermal mass (LTM) Deans’ switch (DS) heart-cutting multidimensional GC–MS/O (H/C MDGC–MS/O) was optimized for its performance using three model volatile thiol analytes. Significant impacts of instrument parameters including main host oven temperature, H/C width, and cryogenic trapping on the separation and detection were observed. Main host oven at high temperature was required to maintain flow balance for H/C operation. Narrow H/C width was selected to avoid irregular chromatographic behavior. Cryogenic trapping at the optimal temperature was needed to effectively capture the H/C effluent at the inlet of second column and to significantly enhance peak detection. The development of the Ag+ SPE H/C MDGC–MS/O protocol was applied to screen a selection of several premium Bordeaux red wines presenting a bouquet with intense empyreumatic nuances. In selected wines, a number of odorous zones with such aroma descriptors were characterized. Supported by olfactometric results, retention data, and corresponding mass spectra, the identification of odorous thiols that were not previously reported in wine was described. The identification of unknown thiols expands our understanding of the volatile molecular markers contributing to the aroma quality of premium wines

DOI:

Publication date: June 22, 2022

Issue: IVAS 2022

Type: Article

Authors

Chen Liang¹* and Darriet Philippe¹

¹Univ. Bordeaux, INRAE, Bordeaux INP, UMR1366 Œnologie, ISVV, F-33140 Villenave d’Ornon, France

Contact the author

Keywords

red wine, aroma, volatile thiols, extraction, identification

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Nitrogen uptake, translocation and YAN in berries upon water deficit in grapevines with contrasting stomatal sensitivity

Nitrogen (N2) is critical in grape berries, especially in organic wine making. After intake, N2 follows various metabolic and allocation routes and, from veraison, partly reallocates into berries. Water deficit affects the N2 nutrition due to a poor diffusion in soil solution and vascular mobilisation. Also, affects photosynthesis and the energy needed for metabolism, whose extent would depend on the stomatal sensitivity of the plant. We have assessed the effect of a moderate water deficit from pea size, in 3 years old field grown potted plants of Chardonnay (CH) and Cabernet Sauvignon (CS), differing in stomatal sensitivity, on the N2 status of plant parts. Water deficit reduced photosynthesis, leaf area and fresh and dry plant mass along the season, but up to a higher extent in CS.

Staying hydrated – not easy when it’s hot!

Heat and drought episodes during the growing season are becoming more frequent and more severe in many of the world’s grape‐growing regions

Diagnosis of soil quality and evaluation of the impact of viticultural practices on soil biodiversity in a Southwestern France vineyard

The soil plays a pivotal role in the agroecological transition processes, due to its numerous implications in production support, water regulation, air and nutrient supply, and its function of reservoir for the major part of planet biodiversity. Therefore, soil quality and adequate soil management are key levers for an ecologically and economically sustainable viticulture. Gascogn’Innov (2017-2022) is an Operational Group funded by the European Innovation Partnership for Agriculture. As such, it gathered winegrowers from the south-west of France (Gascony), scientists, advisors and technicians, around a project focused on the biological functioning of viticultural soil and the design of better-adapted technical paths for soil protection.

Genetic identification of 200-year-old Serbian grapevine herbarium

Botanist Andreas Raphael Wolny collected a grapevine herbarium from 1812-1824 in Sremski Karlovci (wine region of Vojvodina, Serbia), which represents local cultivated grapevine diversity before the introduction of grape phylloxera in the region. The herbarium comprises over 100 samples organized into two subcollections based on berry colour (red and white varieties), totaling 47 different grape varieties. The objective of this study was to investigate the historical varietal assortment of Balkan and Pannonian winegrowing areas with long viticulture traditions.

Insights into the stable isotope ratio variability of hybrid grape varieties

The wine industry faces the consumer’s increasing demand for a sustainable and environmentally-friendly production [1]. This demand has been shared and boosted by the European Union within the European Green Deal in the Farm to Fork strategy that aims to reduce a 50% the pesticide utilisation in farming systems. Among the agronomical approaches so far proposed, the use of mould resitant hybrid varieties -based on crossings of Vitis vinifera with other Vitis spp [2]- with a high tolerance to the attack of vine patogens is gaining the vinegrowers attention and the production area is continuously increasing