IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Anthocyanins Chemistry During Red Wine Ageing

Anthocyanins Chemistry During Red Wine Ageing

Abstract

Anthocyanins are the main pigments present in young red wines, being responsible for their intense red color. These pigment in aqueous solutions occur in different forms in equilibrium that are dependent on the pH. At low pH values, anthocyanins are present in their red flavylium cation form but when the pH increases for values between 3 and 6, the flavylium cation form is hydrated yielding to the colorless hemiketal form that is in equilibrium with the pale yellow cis-chalcone form through tautomerization. Simultaneously, the flavylium cation is deprotonated to the respective violet neutral quinoidal base that at higher pH values can be deprotonated yielding the blue anionic quinoidal base. At wine pH (3-4), anthocyanin would be expected to be present mainly in their non-colored hemiketal form. However, the flavylium cation is the main form present in red wines. This is the result of its stabilization by different co-pigmentation mechanisms such as self-association and interaction with other wine components. Oligomeric anthocyanins (dimeric and trimeric) were also found to occur in red grapes and respective wines. Moreover, it was showed that trimeric anthocyanins reactivity is strongly dominated by acid-base chemistry, with the reaction sequence hydration – tautomerization – isomerization accounting less than 10% of the overall reactivity, which seems to indicate that polymerization may be a natural stabilization mechanism for the red color of anthocyanins. In addition, throughout wine ageing and maturation, the concentration of anthocyanins decreases dramatically and a color change is observed from red/violet to a more brick hue due to the formation of several anthocyanin-derivatives such as A and B-type vitisins and other pyranoanthocyanins that have been described in the literature over the years. Those compounds formed present a more stable color than their precursors (anthocyanins).  During this process, anthocyanins can yield polymeric pigments by their reaction with flavanols (directly or mediated by aldehydes). Moreover, it has been demonstrated that A-type vitisins (the main pyranoanthocyanins found in red wines) can also react with other wine components giving origin to polymeric pigments with different colors ranging from yellow to turquoise blue. Polymeric pigments are described to play an important role in the long-term color stability of aged red wines, however there is still a lot to know about their identity, chemical pathways and real contribution to the color displayed by red wines.

 Apart from the chromatic features that anthocyanins and anthocyanin-derived pigments are able to confer to red wines, it has also been demonstrated that this pigments can be involved in astringency and bitterness perception of red wines.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Joana Oliveira1

1LAQV – REQUIMTE – Department of Chemistry and Biochemistry of Faculty of Science of University of Porto, Rua do Campo Alegre S/N, 4169-007 Porto, Portugal

Contact the author

Keywords

Anthocyanins; chemistry; red wine ageing; anthocyanin-derived pigments; organoleptic properties

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

What is the fate of oxygen consumed by red wine? Main processes and reaction products

Oxygen consumed by wine is used to oxidize sulfur dioxide and ethanol to form acetaldehyde wine oxygen consumption rate (OCR) was negatively correlated with the initial acetaldehyde level.

Have the best Bordeaux wines been drunk already? A reflection on the transient nature of terroir, using case study Australia

Aim:  The aim of this paper is to demonstrate that the meaning of terroir should be regarded as transient. This is because climate, one of the principal components of terroir, is changing with time, and can no longer be assumed to be constant with fluctuations about a mean. This is due to the climate crisis.

Extraction of stilbenes from grape cane waste and their possible applications

Vine pruning residues constitute a significant fraction of vitivinicultural waste; in fact, depending on the variety and training system, they can reach 1-5 tons/ha/year.

An exploration of South Tyrolean Pinot blanc wines and their quality potential in vineyard sites across a range of altitudes

Aim: Pinot Blanc is the third most planted white wine grape in northern Italy’s region of South Tyrol, where small-scale viticultural production permits the examination of the wine’s diverse expressive potential in a small area across a wide range of climatic variables. This study aimed to explore the qualitative potential of Pinot Blanc across a range of climatic variation leading to site-specific terroir expression in a cool climate region.

Monitoring arthropods diversity in the “Costières de Nîmes” viticulture landscape

Biodiversity loss in agrosystems is partly due to landscape simplification (field enlargement, hedgerows removal…) that led to a loss of heterogeneity of the overall landscape.