IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Anthocyanins Chemistry During Red Wine Ageing

Anthocyanins Chemistry During Red Wine Ageing

Abstract

Anthocyanins are the main pigments present in young red wines, being responsible for their intense red color. These pigment in aqueous solutions occur in different forms in equilibrium that are dependent on the pH. At low pH values, anthocyanins are present in their red flavylium cation form but when the pH increases for values between 3 and 6, the flavylium cation form is hydrated yielding to the colorless hemiketal form that is in equilibrium with the pale yellow cis-chalcone form through tautomerization. Simultaneously, the flavylium cation is deprotonated to the respective violet neutral quinoidal base that at higher pH values can be deprotonated yielding the blue anionic quinoidal base. At wine pH (3-4), anthocyanin would be expected to be present mainly in their non-colored hemiketal form. However, the flavylium cation is the main form present in red wines. This is the result of its stabilization by different co-pigmentation mechanisms such as self-association and interaction with other wine components. Oligomeric anthocyanins (dimeric and trimeric) were also found to occur in red grapes and respective wines. Moreover, it was showed that trimeric anthocyanins reactivity is strongly dominated by acid-base chemistry, with the reaction sequence hydration – tautomerization – isomerization accounting less than 10% of the overall reactivity, which seems to indicate that polymerization may be a natural stabilization mechanism for the red color of anthocyanins. In addition, throughout wine ageing and maturation, the concentration of anthocyanins decreases dramatically and a color change is observed from red/violet to a more brick hue due to the formation of several anthocyanin-derivatives such as A and B-type vitisins and other pyranoanthocyanins that have been described in the literature over the years. Those compounds formed present a more stable color than their precursors (anthocyanins).  During this process, anthocyanins can yield polymeric pigments by their reaction with flavanols (directly or mediated by aldehydes). Moreover, it has been demonstrated that A-type vitisins (the main pyranoanthocyanins found in red wines) can also react with other wine components giving origin to polymeric pigments with different colors ranging from yellow to turquoise blue. Polymeric pigments are described to play an important role in the long-term color stability of aged red wines, however there is still a lot to know about their identity, chemical pathways and real contribution to the color displayed by red wines.

 Apart from the chromatic features that anthocyanins and anthocyanin-derived pigments are able to confer to red wines, it has also been demonstrated that this pigments can be involved in astringency and bitterness perception of red wines.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Joana Oliveira1

1LAQV – REQUIMTE – Department of Chemistry and Biochemistry of Faculty of Science of University of Porto, Rua do Campo Alegre S/N, 4169-007 Porto, Portugal

Contact the author

Keywords

Anthocyanins; chemistry; red wine ageing; anthocyanin-derived pigments; organoleptic properties

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Exploring zoxamide sensitivity in Plasmopara viticola populations: implications for fungicide management in precision agriculture

Fungicides play a critical role in managing grapevine downy mildew caused by the oomycete Plasmopara viticola, a biotrophic and polycyclic pathogen with a high risk of fungicide resistance. Zoxamide, categorized as a low to medium resistance risk, disrupts cell division by inhibiting tubulin polymerization. Resistance to zoxamide is uncommon in field isolates. This six-year study (2017-2022) aimed to detect and quantify zoxamide sensitivity in P. viticola populations across varying resistance pressures in Italian grapevine regions. Analysis of 126 samples from 57 vineyards, mainly in North-Eastern Italy, revealed that most samples exhibited EC50, EC95, and MIC values below 0.1 and 10 mg/L of zoxamide, respectively. Nineteen vineyards showed reduced sensitivity (MIC>100 mg/L), but only four samples were characterized by 24-54% resistant oospores at >100 mg/L of zoxamide.

Influence of grapes origin and yeast strain on aroma profile of corvina and corvinone dry passito wines

Valpolicella is a wine region characterized by a wide use of the technology of grape drying for the production of two red passito wines, recognized as PDOs, “Recioto della Valpolicella” and the most famous “Amarone della Valpolicella”. Geographical origin of the grapes can influence wine composition by grape chemical composition yeast behaviour during fermentation. This study investigates the impact of different commercial yeast strains on aroma profiles of wines produced with withered grapes of different origins. In addition, the influence of spontaneous fermentation is also considered. METHODS: Experimental red wines were produced with a standard winemaking protocol with withered Corvina and Corvinone grapes obtained from two different geographical areas within the Valpolicella region. Fermentations were carried out with four different commercial yeasts plus a spontaneous fermentation. Wines were analysed by means of SPE- and SPME-GC-MS techniques and sensory analysis (sorting task).

UNRAVELING THE CHEMICAL MECHANISM OF MND FORMATION IN RED WINE DURING BOTTLE AGING : IDENTIFICATION OF A NEW GLUCOSYLATED HYDROXYKETONE PRO-PRECURSOR

During bottle aging, the development of wine aroma through low and gradual oxygen exposure is often positive in red wines, but can be unfavorable in many cases, resulting in a rapid loss of fresh, fruity flavors. Prematurely aged wines are marked by intense prune and fig aromatic nuances that dominate the desirable bouquet achieved through aging (Pons et al., 2013). This aromatic defect, in part, is caused by the presence of 3-methyl-2,4-nonanedione (MND). MND content was shown to be lower in nonoxidized red wines and higher in oxidized red wines, which systematically exceeds the odor detection threshold (62 ng/L).

Historical terraced vineyards – heritage and nature conservation strategies

Historical terrace vineyards are simultaneously impressive documents of the human inclination to design, sites for the production of high quality wines and habitats for a rich variety of flora and fauna

Aromatic maturity is a cornerstone of terroir expression in red wine

In this video recording of the IVES science meeting 2023, Stéphanie Marchand (University of Bordeaux, ISVV, INRAE, UMR 1366 OENOLOGIE, Villenave d’Ornon, France) speaks about the aromatic maturity as a cornerstone of terroir expression in red wine. This presentation is based on an original article accessible for free on OENO One.