IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Anthocyanins Chemistry During Red Wine Ageing

Anthocyanins Chemistry During Red Wine Ageing

Abstract

Anthocyanins are the main pigments present in young red wines, being responsible for their intense red color. These pigment in aqueous solutions occur in different forms in equilibrium that are dependent on the pH. At low pH values, anthocyanins are present in their red flavylium cation form but when the pH increases for values between 3 and 6, the flavylium cation form is hydrated yielding to the colorless hemiketal form that is in equilibrium with the pale yellow cis-chalcone form through tautomerization. Simultaneously, the flavylium cation is deprotonated to the respective violet neutral quinoidal base that at higher pH values can be deprotonated yielding the blue anionic quinoidal base. At wine pH (3-4), anthocyanin would be expected to be present mainly in their non-colored hemiketal form. However, the flavylium cation is the main form present in red wines. This is the result of its stabilization by different co-pigmentation mechanisms such as self-association and interaction with other wine components. Oligomeric anthocyanins (dimeric and trimeric) were also found to occur in red grapes and respective wines. Moreover, it was showed that trimeric anthocyanins reactivity is strongly dominated by acid-base chemistry, with the reaction sequence hydration – tautomerization – isomerization accounting less than 10% of the overall reactivity, which seems to indicate that polymerization may be a natural stabilization mechanism for the red color of anthocyanins. In addition, throughout wine ageing and maturation, the concentration of anthocyanins decreases dramatically and a color change is observed from red/violet to a more brick hue due to the formation of several anthocyanin-derivatives such as A and B-type vitisins and other pyranoanthocyanins that have been described in the literature over the years. Those compounds formed present a more stable color than their precursors (anthocyanins).  During this process, anthocyanins can yield polymeric pigments by their reaction with flavanols (directly or mediated by aldehydes). Moreover, it has been demonstrated that A-type vitisins (the main pyranoanthocyanins found in red wines) can also react with other wine components giving origin to polymeric pigments with different colors ranging from yellow to turquoise blue. Polymeric pigments are described to play an important role in the long-term color stability of aged red wines, however there is still a lot to know about their identity, chemical pathways and real contribution to the color displayed by red wines.

 Apart from the chromatic features that anthocyanins and anthocyanin-derived pigments are able to confer to red wines, it has also been demonstrated that this pigments can be involved in astringency and bitterness perception of red wines.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Joana Oliveira1

1LAQV – REQUIMTE – Department of Chemistry and Biochemistry of Faculty of Science of University of Porto, Rua do Campo Alegre S/N, 4169-007 Porto, Portugal

Contact the author

Keywords

Anthocyanins; chemistry; red wine ageing; anthocyanin-derived pigments; organoleptic properties

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Wine aging : a bottleneck Story ?

The sporadic oxidation of white wines remains an open question, making wine shelf life a subjective debate. Through a multidisciplinary synoptic approach performed as a remarkable case study on aged bottles of white wine, this work unraveled a yet unexplored route for uncontrolled oxidation.

Typicité et terroir : importance relative du type de sol et du niveau de maturité dans la typologie sensorielle du vin

Le lien fonctionnel entre typicité et terroir a été étudié en prenant en compte deux dimensions importantes : le type de sol et la date de vendanges. Ces deux facteurs sont, à des degrés divers

Characterization of resistant varieties produced in the context of a search for regional typicality

Planted between 2018 and 2019, the ‘New Vine’ system is a vineplot, comprising 169 individuals genotypes (5 vines/individual), located on a gravelous soil, in the INRAE Grande-Ferrade site (Villenave d’Ornon, France).

Climatic zoning and viticulture in Galicia (North West Spain)

Galicia is situated in the NW of the Iberian Peninsula, just north of Portugal and so sharing a mild, maritime climate, certain vine species and a number of long-standing viticultural traditions. In Galicia about 18,000 has are dedicated to wine growing, of which roughly half (46%) correspond to the 6 DOs in the area.

Colour assessment of port wines using colorimetric and spectrophotometric methods

Colour is an important quality parameter in wines and is the result of a complex mixture of pigments
(including anthocyanins and their derivatives, quinones, xanthyllium compounds, etc.). Red wine colour changes over time as pigments react between themselves and with other wine macromolecules
(particularly polyphenols). During wine tasting, colour is normally assessed on the outer rim of the wine profile in a tilted glass, since most wines are too opaque to be analysed in the middle of the glass. Therefore, depending on the depth of observation considered, the perception of wine colour can be different.