IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Quantification of Eugenol in various matrixes from hybrids vines. Case study of Armagnac white spirits production

Quantification of Eugenol in various matrixes from hybrids vines. Case study of Armagnac white spirits production

Abstract

Nowadays, winemaking is dealing with great challenges, notably climate change, disease resistance and low pesticide inputs, desire for more sustainable agricultural productions and permanent changing of consumer preference. Trying to propose practice improvements, scientists are exploring vine hybridization a paradoxically old but still promising way to take up such challenges (Pedneault & Provost, 2016). Phylloxera crisis in Europe (XIXth century) was a crucial step for improving hybridization in grapevine. Unfortunately some of the wines produced then presented redibitory sensorial default and were finally excluded for getting the PDO (Protected Designation of Origin) wine label in France.However, one grape variety from Armagnac vineyard was maintained despite the ban: the Baco blanc, a complex hybrid of Vitis labrusca x Vitis riparia x Vitis vinifera. Baco was created to be a disease tolerant and productive vine of white wine intended for distillation (Baco, 1925).Various matrixes, from vine shoots to distillates, are available for analysis in Armagnac wine spirit production. It was noticed that Baco blanc samples (all matrixes included) had an atypical chemical profile. Indeed, eugenol, a phenylpropenic compound, usually known to be extracted by contact with oak, is significantly more concentrated in white spirits made with Baco than same products made with V.vinifera cultivars. Eugenol was also quantified in other hybrids (Vitis riparia-containing hybrids as Marechal Foch and Frontenac) wines but in lower concentrations than in Baco blanc wines (Sun et al., 2011).Eugenol has a clove aroma and a noticeable and well-known antiseptic action, a gustative impact including an anesthesic power. These observations raise many questions, the main ones being: “Is there a link between tolerance of Baco to diseases and the presence of eugenol?”; “What is the dynamic of eugenol levels during spirit making?”; “Is there a link between the eugenol presence and the typicity of Baco wine spirits ?”Trying to answer these questions eugenol quantification was carried out by a HS-SPME-GC-MS method using deuterium labelled eugenol as internal standard and a procedure adapted to each matrix. An enzymatic hydrolysis (β-glucosidase enzyme) with addition of citrate-phosphate buffer was performed for plant material, musts and wines. The main goal was to highlight the existence of two eugenol fractions : a free one and a bound one. Such eugenol « cartography » resulted in interesting observations. First a greater eugenol concentration and accumulation during maturation occurs in Baco blanc than in other V.vinifera cultivars tested (Ugni blanc and Folle blanche). Second using enzymes increases the eugenol content during first steps of winemaking. Third, eugenol amounts seem to increase along with the storage duration on lees (before distillation). Finally, alambic characteristics may influence the alcohol content which may also impact eugenol concentration.

References

Baco, F. (1925). Précis complet de viticulture moderne et de vinification : Mes meilleures vignes hybrides franco-americaines : leurs principaux caractères : les meilleurs moyens pour les multiplier, les planter, les tailler, les cultiver, les vinifier (Imprimeries Gounouilhou)
Pedneault, K., & Provost, C. (2016). Fungus resistant grape varieties as a suitable alternative for organic wine production : Benefits, limits, and challenges. Scientia Horticulturae, 208, 57-77. https://doi.org/10.1016/j.scienta.2016.03.016
Sun, Q., Gates, M. J., Lavin, E. H., Acree, T. E., & Sacks, G. L. (2011). Comparison of Odor-Active Compounds in Grapes and Wines from Vitis vinifera and Non-Foxy American Grape Species. Journal of Agricultural and Food Chemistry, 59(19), 10657-10664. https://doi.org/10.1021/jf2026204

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Poster

Authors

Hastoy Xavier1, Franc Céline1, Riquier Laurent1, Marchand-Marion Stéphanie1, Ségur Marie-Claude2, Fermaud Marc3 and De Revel Gilles1

1Université de Bordeaux, INRAE, Bordeaux INP, OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France
2Bureau National Interprofessionnel de l’Armagnac (BNIA), 32800 Eauze, France
3INRAE, UMR SAVE, UMTSeven, Bordeaux Science Agro, ISVV, F-33882, Villenave d’Ornon, France 

Contact the author

Keywords

Phenylpropenes, Baco blanc, Hybrid vines, White wine spirits, Armagnac

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Colored hail‐nets as a tool to improve vine water status: effects on leaf gas exchange and berry quality in Italia table grape

Protecting table grape vineyards with white hail‐nets is a common practice in Southern Italy. Hail‐nets result in shading effects of 10‐20 %, depending on their density

First disclosure of eugenol precursors in Vitis genus: analytical development and quantification

The main aim of this work was to develop an analytical method to disclosure the
molecular form of eugenol precursor. Indeed eugenol is an important contributor to
Armagnac spirits typicity made with Baco blanc.

Geopedological and climatic zoning of northern Malaga vineyards region: Fuente de Piedra, Humilladero and Mollina (southern Spain)

The vineyards placed in the municipal areas of Fuente de Piedra, Humilladero and Mollina constitute a wine-growing important area of the “Zona Norte” of the province of Málaga.

Optimized protocol for high-quality RNA extraction from grape tissues using sorbitol pre-wash

Obtaining high-quality RNA from grape tissues, including berry pulp, berry skins, stems, rachis, or roots, is challenging due to their composition, which includes polysaccharides, phenolic compounds, sugars, and organic acids that can negatively affect RNA extraction. For instance, polyphenols and other secondary metabolites can bind to RNA, making it difficult to extract a pure sample. Additionally, RNA can co-precipitate with polysaccharides, leading to lower extraction yield. Also, sugars and organic acids can interfere with the pH and ionic properties of the extraction buffer. To address these challenges, we optimized a protocol for RNA isolation from grape tissues.

Kinetic investigations of the sulfite addition on flavanols

Sulfonated monomeric and dimeric flavan-3-ols are recently discovered in wine and proved to have great importance in understanding wine chemistry and quality [1, 2].