IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Quantification of Eugenol in various matrixes from hybrids vines. Case study of Armagnac white spirits production

Quantification of Eugenol in various matrixes from hybrids vines. Case study of Armagnac white spirits production

Abstract

Nowadays, winemaking is dealing with great challenges, notably climate change, disease resistance and low pesticide inputs, desire for more sustainable agricultural productions and permanent changing of consumer preference. Trying to propose practice improvements, scientists are exploring vine hybridization a paradoxically old but still promising way to take up such challenges (Pedneault & Provost, 2016). Phylloxera crisis in Europe (XIXth century) was a crucial step for improving hybridization in grapevine. Unfortunately some of the wines produced then presented redibitory sensorial default and were finally excluded for getting the PDO (Protected Designation of Origin) wine label in France.However, one grape variety from Armagnac vineyard was maintained despite the ban: the Baco blanc, a complex hybrid of Vitis labrusca x Vitis riparia x Vitis vinifera. Baco was created to be a disease tolerant and productive vine of white wine intended for distillation (Baco, 1925).Various matrixes, from vine shoots to distillates, are available for analysis in Armagnac wine spirit production. It was noticed that Baco blanc samples (all matrixes included) had an atypical chemical profile. Indeed, eugenol, a phenylpropenic compound, usually known to be extracted by contact with oak, is significantly more concentrated in white spirits made with Baco than same products made with V.vinifera cultivars. Eugenol was also quantified in other hybrids (Vitis riparia-containing hybrids as Marechal Foch and Frontenac) wines but in lower concentrations than in Baco blanc wines (Sun et al., 2011).Eugenol has a clove aroma and a noticeable and well-known antiseptic action, a gustative impact including an anesthesic power. These observations raise many questions, the main ones being: “Is there a link between tolerance of Baco to diseases and the presence of eugenol?”; “What is the dynamic of eugenol levels during spirit making?”; “Is there a link between the eugenol presence and the typicity of Baco wine spirits ?”Trying to answer these questions eugenol quantification was carried out by a HS-SPME-GC-MS method using deuterium labelled eugenol as internal standard and a procedure adapted to each matrix. An enzymatic hydrolysis (β-glucosidase enzyme) with addition of citrate-phosphate buffer was performed for plant material, musts and wines. The main goal was to highlight the existence of two eugenol fractions : a free one and a bound one. Such eugenol « cartography » resulted in interesting observations. First a greater eugenol concentration and accumulation during maturation occurs in Baco blanc than in other V.vinifera cultivars tested (Ugni blanc and Folle blanche). Second using enzymes increases the eugenol content during first steps of winemaking. Third, eugenol amounts seem to increase along with the storage duration on lees (before distillation). Finally, alambic characteristics may influence the alcohol content which may also impact eugenol concentration.

References

Baco, F. (1925). Précis complet de viticulture moderne et de vinification : Mes meilleures vignes hybrides franco-americaines : leurs principaux caractères : les meilleurs moyens pour les multiplier, les planter, les tailler, les cultiver, les vinifier (Imprimeries Gounouilhou)
Pedneault, K., & Provost, C. (2016). Fungus resistant grape varieties as a suitable alternative for organic wine production : Benefits, limits, and challenges. Scientia Horticulturae, 208, 57-77. https://doi.org/10.1016/j.scienta.2016.03.016
Sun, Q., Gates, M. J., Lavin, E. H., Acree, T. E., & Sacks, G. L. (2011). Comparison of Odor-Active Compounds in Grapes and Wines from Vitis vinifera and Non-Foxy American Grape Species. Journal of Agricultural and Food Chemistry, 59(19), 10657-10664. https://doi.org/10.1021/jf2026204

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Poster

Authors

Hastoy Xavier1, Franc Céline1, Riquier Laurent1, Marchand-Marion Stéphanie1, Ségur Marie-Claude2, Fermaud Marc3 and De Revel Gilles1

1Université de Bordeaux, INRAE, Bordeaux INP, OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France
2Bureau National Interprofessionnel de l’Armagnac (BNIA), 32800 Eauze, France
3INRAE, UMR SAVE, UMTSeven, Bordeaux Science Agro, ISVV, F-33882, Villenave d’Ornon, France 

Contact the author

Keywords

Phenylpropenes, Baco blanc, Hybrid vines, White wine spirits, Armagnac

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

‘Cabernet Sauvignon’ (Vitis vinifera L.) berry skin flavonol and anthocyanin composition is affected by trellis systems and applied water amounts

Trellis systems are selected in wine grape vineyards to mainly maximize vineyard yield and maintain berry quality. This study was conducted in 2020 and 2021 to evaluate six commonly utilized trellis systems including a vertical shoot positioning (VSP), two relaxed VSPs (VSP60 and VSP80), a single high wire (SH), a high quadrilateral (HQ), and a guyot (GY), combined with three levels of irrigation regimes based on different crop evapotranspiration (ETc) replacements, including a 25% ETc, 50% ETc, and 100% ETc. The results indicated SH yielded the most fruits and accumulated the most total soluble solids (TSS) at harvest in 2020, however, it showed the lowest TSS in the second season. In 2020, SH and HQ showed higher concentrations in most of the anthocyanin derivatives compared to the VSPs. Similar comparisons were noticed in 2021 as well. SH and HQ also accumulated more flavonols in both years compared to other trellis systems. Overall, this study provides information on the efficacy of trellis systems on grapevine yield and berry flavonoid accumulation in a currently warming climate.

Assessment of the impact of actions in the vineyard and its surrounding environment on biodiversity in Rioja Alavesa (Spain)

Traditional viticulture areas have experienced in the last decades an intensification of field practices, linked to an increased use of fertilisers and phytosanitary products, and to a more intensive mechanization and uniformization of the landscape. This change in management has sometimes led to higher rates of soil erosion andloss of soil structure, fertility decline, groundwater contamination, and to an increased pressure of pests and diseases. Additionally, intensification usually leads to a simplification of landscapes, of particular concern in prestigious wine grape regions where the economical revenue encourages the conversion of land use from natural habitats to high value wine grape production. To revert this trend, it is necessary that growers implement actions that promote biodiversity in their vineyards. The aim of this study is to assess the impact of the implementation of cover crops, vegetational corridors, dry stone walls and vineyard biodiversity hotspots estimated through the study of arthropods. The work has been carried out in four vineyards in Rioja Alavesa belonging to Ostatu winery, where these infrastructures were implemented in 2020. The presence and diversity of arthropods was studied by capturing them at different times in the season and at different distances from the infrastructure using pit-fall traps in the soil and yellow, white and blue chromatic traps at the canopy level. This is a preliminary study in which all adult insects were sorted to the taxonomic level of order and Coleoptera were classified to morphospecies. The results obtained show that there is a relationship between the basic characteristics of the vineyard and the arthropods captured, with a positive effect, although also dependent on the vineyard, of the presence of infrastructure.

Measures to promote biodiversity in viticulture—how do socio-economic factors influence implementation?

Context and purpose. In Germany, vineyards are typically intensively managed monocultural systems shaped by low structural variability.

Use of uv light for suppression of grapevine diseases

Microbial pathogens of plant have evolved to sense, interpret, and use light to direct their development. One aspect of this evolved relationship is photolyase-mediated repair of UV-induced damage to pathogen DNA. Application of germicidal UV (UV-C) at night circumvents the blue light-driven repair of pathogen DNA and allows non-phytotoxic doses of UV-C to suppress a variety of pathogenic microbes and even certain arthropod pests without damage to vines or fruit. Lamps arrays have been designed specifically for the canopy architecture of grapevines and have been deployed on both tractor-drawn and robotic carriages for partial to near-complete suppression of powdery mildew (Erysiphe necator), sour rot (fungal, bacterial, and arthropod complex), and downy mildew (Plasmopara viticola).

Cultivo de la Malvasia en Tenerife

El archipiélago Canario, conocido en el pasado como las Islas del Vino, fue una gran potencia en la elaboración y comercialización del vino, sobre todo de caldos elaborados con la variedad Malvasía.