IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Quantification of Eugenol in various matrixes from hybrids vines. Case study of Armagnac white spirits production

Quantification of Eugenol in various matrixes from hybrids vines. Case study of Armagnac white spirits production

Abstract

Nowadays, winemaking is dealing with great challenges, notably climate change, disease resistance and low pesticide inputs, desire for more sustainable agricultural productions and permanent changing of consumer preference. Trying to propose practice improvements, scientists are exploring vine hybridization a paradoxically old but still promising way to take up such challenges (Pedneault & Provost, 2016). Phylloxera crisis in Europe (XIXth century) was a crucial step for improving hybridization in grapevine. Unfortunately some of the wines produced then presented redibitory sensorial default and were finally excluded for getting the PDO (Protected Designation of Origin) wine label in France.However, one grape variety from Armagnac vineyard was maintained despite the ban: the Baco blanc, a complex hybrid of Vitis labrusca x Vitis riparia x Vitis vinifera. Baco was created to be a disease tolerant and productive vine of white wine intended for distillation (Baco, 1925).Various matrixes, from vine shoots to distillates, are available for analysis in Armagnac wine spirit production. It was noticed that Baco blanc samples (all matrixes included) had an atypical chemical profile. Indeed, eugenol, a phenylpropenic compound, usually known to be extracted by contact with oak, is significantly more concentrated in white spirits made with Baco than same products made with V.vinifera cultivars. Eugenol was also quantified in other hybrids (Vitis riparia-containing hybrids as Marechal Foch and Frontenac) wines but in lower concentrations than in Baco blanc wines (Sun et al., 2011).Eugenol has a clove aroma and a noticeable and well-known antiseptic action, a gustative impact including an anesthesic power. These observations raise many questions, the main ones being: “Is there a link between tolerance of Baco to diseases and the presence of eugenol?”; “What is the dynamic of eugenol levels during spirit making?”; “Is there a link between the eugenol presence and the typicity of Baco wine spirits ?”Trying to answer these questions eugenol quantification was carried out by a HS-SPME-GC-MS method using deuterium labelled eugenol as internal standard and a procedure adapted to each matrix. An enzymatic hydrolysis (β-glucosidase enzyme) with addition of citrate-phosphate buffer was performed for plant material, musts and wines. The main goal was to highlight the existence of two eugenol fractions : a free one and a bound one. Such eugenol « cartography » resulted in interesting observations. First a greater eugenol concentration and accumulation during maturation occurs in Baco blanc than in other V.vinifera cultivars tested (Ugni blanc and Folle blanche). Second using enzymes increases the eugenol content during first steps of winemaking. Third, eugenol amounts seem to increase along with the storage duration on lees (before distillation). Finally, alambic characteristics may influence the alcohol content which may also impact eugenol concentration.

References

Baco, F. (1925). Précis complet de viticulture moderne et de vinification : Mes meilleures vignes hybrides franco-americaines : leurs principaux caractères : les meilleurs moyens pour les multiplier, les planter, les tailler, les cultiver, les vinifier (Imprimeries Gounouilhou)
Pedneault, K., & Provost, C. (2016). Fungus resistant grape varieties as a suitable alternative for organic wine production : Benefits, limits, and challenges. Scientia Horticulturae, 208, 57-77. https://doi.org/10.1016/j.scienta.2016.03.016
Sun, Q., Gates, M. J., Lavin, E. H., Acree, T. E., & Sacks, G. L. (2011). Comparison of Odor-Active Compounds in Grapes and Wines from Vitis vinifera and Non-Foxy American Grape Species. Journal of Agricultural and Food Chemistry, 59(19), 10657-10664. https://doi.org/10.1021/jf2026204

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Poster

Authors

Hastoy Xavier1, Franc Céline1, Riquier Laurent1, Marchand-Marion Stéphanie1, Ségur Marie-Claude2, Fermaud Marc3 and De Revel Gilles1

1Université de Bordeaux, INRAE, Bordeaux INP, OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France
2Bureau National Interprofessionnel de l’Armagnac (BNIA), 32800 Eauze, France
3INRAE, UMR SAVE, UMTSeven, Bordeaux Science Agro, ISVV, F-33882, Villenave d’Ornon, France 

Contact the author

Keywords

Phenylpropenes, Baco blanc, Hybrid vines, White wine spirits, Armagnac

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Under-vine cover crops as a management tool for irrigated Mediterranean vineyards: agronomic implications and changes in soil physical and biological properties 

Cover crops are increasingly considered in Mediterranean climate vineyards due to a combination of agronomic and regulatory considerations. However, the soil under the vines themselves is typically kept free of vegetation by mechanical plowing or herbicide spraying. Taking into account that these practices may convey a number of non-favourable economic and environmental implications, and the fact that drip irrigation can ease the use of cover crops under the vines, the aim of this work was to evaluate the agronomic implications and the changes in soil physical and biological properties caused by an under-vine cover crop in a Mediterranean area.

Impact of technical itineraries on the diversity and the functioning of arbuscular mycorrhizal fungi and associated microorganisms in vineyards soils and grapevine roots

Context and purpose. The vine is a holobiont, where the plant interacts positively, negatively, and neutrally with microbes that together form the vine’s microbiome.

Exploring non-Saccharomyces wine yeasts native from Castilla-La Mancha (Spain) to enhance bioprotection and quality of wines

The current tendency to reduce SO2 in winemaking, due to its adverse effects in sensitive individuals [1], has led to the development of new techniques to mitigate SO2 absence and to exert the same antimicrobial and antioxidant effects.

Advanced phenology due to climate change is projected to shift precipitation patterns for key cultivar-region combinations in New Zealand

Context of the study. Shifts in grapevine phenology driven by temperature increase due to climate change may result in different rainfall profiles between phenological stages.

Vineyard innovative tools based on the integration of earth observation services and in-field sensors (VitiGEOSS project)

Climate change is having an unprecedented impact on the wine industry, which is one of the major agricultural sectors around the world. Global warming, combined with the variation in rainfall patterns and the increase in frequency of extreme weather events, is significantly influencing vine physiology and exposing, more frequently, plants to severe biotic and abiotic stresses. This represents a challenge for viticulturists who need to take complex decisions to adjust vineyard management and achieve oenological goals.