IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Impact of the fumaric acid/glutathione pair addition before bottling on Cabernet Sauvignon wine quality

Impact of the fumaric acid/glutathione pair addition before bottling on Cabernet Sauvignon wine quality


Over the last decades, climate change and rising temperatures have impacted the wine industry. Wines from warm regions tend to have a higher pH and lower total acidity. This lack of acidity leads to microbiologically unstable wines (1). Because of the high pH values, higher doses of sulfur dioxide (SO2) are needed to protect the wines, which is in contradiction with the wish of consumers to reduce the use of SO2 in wine. Glutathione (GSH) is known for its antioxidant properties and is already used in white wines to help prevent browning and early spoilage signs (2,3). Fumaric acid (FA), in addition to its high acidifying power, can also be interesting for its antibacterial and antifungal properties (4,5). GSH combined with FA (GSH+FA) could be a candidate to help reduce the use of SO2. Thus, the study aims to evaluate the impact of addition at bottling of GSH, by itself and combined with FA on the quality of a Cabernet Sauvignon red wine.
A sulfite free Cabernet Sauvignon wine was split into two batches: one was kept sulfite-free and the other one was sulfited (80 mg/L). In both batches, FA (0 or 2g/L) and/or glutathione (0, 25 or 50 mg/L), were added. Classical oenological parameters (pH, titratable acidity), color parameters (color intensity, CIELAB), total phenolic compounds (IPT, Folin, total anthocyanins and total tannins), antioxidant capacities (DPPH and CUPRAC) were analyzed just after bottling and six months later. Treated wines were compared to the non-sulfited (NS) and sulfited (S) control wines. Sensory analyses were also performed on wines.


(1) Mira de Orduña, R. Climate Change Associated Effects on Grape and Wine Quality and Production. Food Research International 2010, 43 (7), 1844–1855. https://doi.org/10.1016/j.foodres.2010.05.001.
(2) Wegmann-Herr, P., Ullrich, S., Schmarr, H. G., & Durner, D. (2016). Use of glutathione during white wine production–impact on S-off-flavors and sensory production. In BIO Web of Conferences (Vol. 7, p. 02031). EDP Sciences.
(3) Kritzinger, E. C.; Bauer, F. F.; du Toit, W. J. Role of Glutathione in Winemaking: A Review. J. Agric. Food Chem. 2013, 61 (2), 269–277. https://doi.org/10.1021/jf303665z.
(4) Morata, A.; Bañuelos, M. A.; López, C.; Song, C.; Vejarano, R.; Loira, I.; Palomero, F.; Lepe, J. A. S. Use of Fumaric Acid to Control PH and Inhibit Malolactic Fermentation in Wines. Food Additives & Contaminants: Part A 2020, 37 (2), 228–238. https://doi.org/10.1080/19440049.2019.1684574.
(5) Akao, M., & Kuroda, K. (1991). Antifungal activity of fumaric acid in mice infected with Candida albicans. Chemical and pharmaceutical bulletin, 39(11), 3077-3078. https://doi.org/10.1248/cpb.39.3077


Publication date: June 23, 2022

Issue: IVAS 2022

Type: Poster


Payan Claire1,2, Gancel Anne-Laure1, Christmann Monika2 and Teissedre Pierre-Louis1

1Unité de recherche Œnologie, EA 4577, USC 1366 INRA, ISVV, Université de Bordeaux
2Hochschule Geisenheim University, Von Lade Straße, 65366 Geisenheim, Germany

Contact the author


Fumaric acid, glutathione, color, phenolic compounds, organoleptic quality


IVAS 2022 | IVES Conference Series


Related articles…

Physiological and growth reaction of Shiraz/101-14 Mgt to row orientation and soil water status

Advanced knowledge on grapevine row orientation is required to improve establishment, management and outcomes of vineyards on terroirs with different environmental conditions (climate, soil, topography) and in view of a future change to more extreme climatic conditions. The purpose of this study was to determine the combined effect of row orientation, plant water status and ripeness level on the physiological and viticultural reaction of Shiraz/101-14 Mgt.

Effects of mechanical leafing and deficit irrigation on Cabernet Sauvignon grown in warm climate of California

San Joaquin Valley accounts for 40% of wine grape acreage and produces 70% of wine grape in California. Fruit quality is one of most important factors which impact the economical sustainability of farming wine grapes in this region. Due to the recent drought and expected labor cost increase, the wine industry is thrilled to understand how to improve fruit quality while maintaining the yield with less water and labor input. The present study aims to study the interactive effects of mechanical leafing and deficit irrigation on yield and berry compositions of Cabernet Sauvignon grown in warm climate of California.

The effects of cane girdling on berry texture properties and the concentration of some aroma compounds in three table grape cultivars

The marketability of the table grapes is highly influenced by the consumer demand; therefore the market value of the table grapes is mainly characterized by its berry size, colour, taste and texture. Girdling could cause accumulation of several components in plants above the ringing of the phloem including clusters and resulting improved maturity. The aim of the experiments was to examine the effect of girdling on berry texture characteristics and aroma concentration.

Application of a fluorescence-based method to evaluate the ripening process and quality of Pinot Blanc grape

The chemical composition of grape berries at harvest is one of the most important factors that should be considered to produce high quality wines. Among the different chemical classes which characterize the grape juice, the polyphenolic compound, such as flavonoids, contribute to the final taste and color of wines. Recently, an innovative non-destructive method, based on chlorophyll fluorescence, was developed to estimate the phenolic maturity of red grape varieties through the evaluation of anthocyanins accumulated in the berry skin. To date, only few data are available about the application of this method on white grape varieties.

Different yield regulation strategies in semi-minimal-pruned hedge (SMPH) and impact on bunch architecture

Yields in the novel viticulture training system Semi-Minimal-Pruned Hedge (SMPH) are generally higher compared to the traditional Vertical Shoot Positioning (VSP). Excessive yields have a negative impact on the vine and wine quality, which can result in substantial losses in yield in subsequent vintages (alternate bearing) or penalties in fruit quality. Therefore yield regulation is essential. The bunch architecture in SMPH differs from VSP. Generally there is a higher amount but smaller bunches with lower single berry weights in SMPH compared to VSP.