IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 New understanding on sulfites reactivity in wine

New understanding on sulfites reactivity in wine

Abstract

Sulfur dioxide is widely used during winemaking as an antioxidant and antimicrobial agent. Bisulfite (HSO3−), the predominant form of SO2 at wine pH, reacts with several wine components forming sulfonated adducts. Up to now, the compounds that react with SO2 are categorized into strong and weak binders, depending on the stability of the sulfonated adducts that they produce, meaning that compared to the strong binders, weak binders release easily SO2, and under oxidation conditions, they become a pool of free SO2 that will contribute later to wine’s oxidative stability. Carbonyl compounds have been well studied regarding their reaction with SO2, in contrast to peptides and sulfur containing compounds. In this work, 1H NMR spectroscopy has been used in order to monitor directly under wine-like acidic conditions, the kinetics of sulfonation reactions of carbonyls (acetaldehyde and pyruvic acid) and sulfur containing compounds (cysteine and glutathione) with different ratios of SO2 in aerobic and anaerobic conditions. These simulations of wine aging have shown first, that during aging sulfonation reactions to strong carbonyl binders are reversible inducing a decrease on total SO2 level. The dissociation of carbonyls from sulfites is occurred under all conditions. Second, thiol containing compounds appeared to play the key role as metabolic SO2 sink at the late stages of bottle aging. These, until now, unconsidered SO2 binders appeared stables under wine oxidation conditions and represent the truly waste fraction of sulfites during aging. This study puts under reconsideration the way of evaluating the strength of the SO2 binders and could possibly contribute to new strategies for SO2 management in winemaking.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Tachtalidou Sofia1, Spyros Apostolos2, Heinzmann Silke3, Sok Nicolas1, Noret Laurence1, Denat Frank4, Schmitt-Kopplin Philippe3, Gougeon Régis1 and Nikolantonaki Maria1

 1UMR PAM Université de Bourgogne/Agro Sup Dijon, Institut Universitaire de la Vigne et du Vin, Jules Guyot, 2 Rue Claude Ladrey, 21000, Dijon, France
2NMR Laboratory, Department of Chemistry, University of Crete, P.O. Box 2208, Voutes Campus, 71003, Heraklion, Crete, Greece
4Institut de Chimie Moléculaire de l’Université de Bourgogne, UMR 6302, CNRS, Université Bourgogne Franche-Comté, 21078 Dijon, France

Contact the author

Keywords

sulfur dioxide, acetaldehyde, glutathione, wine, oxidation

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

The influence of culture medium on the dynamics of fermentation of wine yeasts

Wine yeast strains Saccharomyces ellipsoideus have important applications in food industry and in this regard is sought isolation as pure cultures and selecting those strains, which in laboratory investigations which have great biotechnological properties This study was intended as the ratio of live cells and autolysates cells also the influence of culture medium on this report. Yeasts selected for this study were isolated from industrial strains of indigenous grape varieties, namely: Feteasca Royal (FR) Feteasca White (FA), black Feteasca (FN), Romanian Tamaioasa (TR), Babeasca Black (BN) and Cotnari Grasa (GC).

Impact of grapevine rootstock genotypes on nitrogen status of the scion and phenolic composition in Pinot noir berries and wine

Context and purpose of the study. Nitrogen (N) limitation enhances the production of phenolic compounds in grapes due to the downregulation of the flavonoid biosynthesis pathway.

New satellite-based sampling protocols for grapevine nutrient monitoring

Extension specialists often recommend nutrient monitoring through leaf blade or petiole sampling twice a season for each vineyard block. However, due to the time and labor required to collect a large, random sample, many growers complete the task infrequently or incorrectly. Readily available remote sensing images capture the vineyard variability at both spatial and temporal scales, which can capture canopy and soil variability and be used to guide growers to representative sampling locations.

Plant fibers in comparison with other fining agents for the re-duction of pesticide residues and the effect on the volitile profile of Austrian white and red wines.

Pesticide residues in Austrian wines have so far been poorly documented. In 250 wines, 33 grape musts and 45 musts in fermentation, no limit values were exceeded, but in some cases high lev-els (>0.100 mg/l) of single residues were found, meaning that a reduction of these levels before bottling could make sense. In the course of this study, a white and a red wine were spiked with a mix of 23 pesticide residues from the group of fungicides (including botryticides), herbicides and insecticides. The influence of the following treatments on residue concentrations and volatile profiles were investigated: two activated charcoal products, a bentonite clay, two commer-cial mixed fining agents made of bentonite and charcoal, two yeast cell wall products, and a plant fiber-based novel filter additive. The results of this study show that all the agents tested reduced both residues and aromavolatile compounds in wine, with activated charcoal having the strongest effect and bentonite the weakest. The mixed agents and yeast wall products showed less aroma losses than charcoal products, but also lower residue reduction. Plant fibers showed good reduction of pesticides with moderate aroma damage, but these results need to be con-firmed under practical conditions.

Late leaf removal does not consistently delay ripeningin semillon in Australia

Context and purpose of the study ‐ An advancement of grapevine phenological development has been observed worldwide in the last two decades. In South Australia this phenomenon is even more accentuated since grapevine is often grown in a hot climate. The main consequences are earlier harvests at higher sugar levels which also result in more alcoholic wines. These are deemed undesirable for the Australian wine industry with consumer preferences shifting towards lower alcohol wines. Vineyard practices can be implemented to control and delay ripening. Amongst them, apical late leaf removal has been successfully applied in Europe to delay ripening by up to two weeks in Sangiovese, Aglianico and Riesling. In those studies, no negative effects were observed on grape colour, phenolics and on the carbohydrate storage capacity of the vines. To date, this technique has not been studied in Australia. In this study late leaf removal, apical to the bunch zone was applied to the variety Semillon for four seasons and compared to an untreated control.