IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 New understanding on sulfites reactivity in wine

New understanding on sulfites reactivity in wine

Abstract

Sulfur dioxide is widely used during winemaking as an antioxidant and antimicrobial agent. Bisulfite (HSO3−), the predominant form of SO2 at wine pH, reacts with several wine components forming sulfonated adducts. Up to now, the compounds that react with SO2 are categorized into strong and weak binders, depending on the stability of the sulfonated adducts that they produce, meaning that compared to the strong binders, weak binders release easily SO2, and under oxidation conditions, they become a pool of free SO2 that will contribute later to wine’s oxidative stability. Carbonyl compounds have been well studied regarding their reaction with SO2, in contrast to peptides and sulfur containing compounds. In this work, 1H NMR spectroscopy has been used in order to monitor directly under wine-like acidic conditions, the kinetics of sulfonation reactions of carbonyls (acetaldehyde and pyruvic acid) and sulfur containing compounds (cysteine and glutathione) with different ratios of SO2 in aerobic and anaerobic conditions. These simulations of wine aging have shown first, that during aging sulfonation reactions to strong carbonyl binders are reversible inducing a decrease on total SO2 level. The dissociation of carbonyls from sulfites is occurred under all conditions. Second, thiol containing compounds appeared to play the key role as metabolic SO2 sink at the late stages of bottle aging. These, until now, unconsidered SO2 binders appeared stables under wine oxidation conditions and represent the truly waste fraction of sulfites during aging. This study puts under reconsideration the way of evaluating the strength of the SO2 binders and could possibly contribute to new strategies for SO2 management in winemaking.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Tachtalidou Sofia1, Spyros Apostolos2, Heinzmann Silke3, Sok Nicolas1, Noret Laurence1, Denat Frank4, Schmitt-Kopplin Philippe3, Gougeon Régis1 and Nikolantonaki Maria1

 1UMR PAM Université de Bourgogne/Agro Sup Dijon, Institut Universitaire de la Vigne et du Vin, Jules Guyot, 2 Rue Claude Ladrey, 21000, Dijon, France
2NMR Laboratory, Department of Chemistry, University of Crete, P.O. Box 2208, Voutes Campus, 71003, Heraklion, Crete, Greece
4Institut de Chimie Moléculaire de l’Université de Bourgogne, UMR 6302, CNRS, Université Bourgogne Franche-Comté, 21078 Dijon, France

Contact the author

Keywords

sulfur dioxide, acetaldehyde, glutathione, wine, oxidation

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Grapevine yield-gap: identification of environmental limitations by soil and climate zoning in Languedoc-Roussillon region (south of France)

Grapevine yield has been historically overlooked, assuming a strong trade-off between grape yield and wine quality. At present, menaced by climate change, many vineyards in Southern France are far from the quality label threshold, becoming grapevine yield-gaps a major subject of concern. Although yield-gaps are well studied in arable crops, we know very little about grapevine yield-gaps. In the present study, we analysed the environmental component of grapevine yield-gaps linked to climate and soil resources in the Languedoc Roussillon. We used SAFRAN data and IGP Pays d’Oc wine yields from 2010 to 2018. We selected climate and soil indicators proving to have a significant effect on average wine yield-gaps at the municipality scale. The most significant factors of grapevine yield were the Soil Available Water Capacity; followed by the Huglin Index and the Climatic Dryness Index. The Days of Frost; the Soil pH; and the Very Hot Days were also significant. Then, we clustered geographical zones presenting similar indicators, facilitating the identification of resources yield-gaps. We discussed the number of zones with the experts of IGP Pays d’Oc label, obtaining 7 zones with similar limitations for grapevine yield. Finally, we analysed the main resources causing yield-gaps and the grapevine varieties planted on each zone. Mapping grapevine resource yield-gaps are the first stage for understanding grapevine yield-gaps at the regional scale.

Enhancement of the terroir

The terroir is today the most important factor of production and development in the wine sector. In a context where the commercial challenge is taking place all over the place, the distinction between traditional and “new” producing countries is not only a geographical, cultural and technical counter position but also, and above all, a legal one. Indeed, the system of standards present in the “old world” (plantation rights, production decrees, yields per hectare, etc.) which may represent, in the short term on the global market, constraints to development and product innovation must become an opportunity. But threats become opportunities, if we work, from the vine to the market, via communication, more on the elements of difference than on those of affinity.

Mitigating the effects of climate change on berry composition by canopy management

Primary and secondary metabolites are major components of grape composition and their balances define wine typicality

Characterization of variety-specific changes in bulk stomatal conductance in response to changes in atmospheric demand and drought stress

In wine growing regions around the world, climate change has the potential to affect vine transpiration and overall vineyard water use due to related changes in atmospheric demand and soil water deficits. Grapevines control their transpiration in response to a changing environment by regulating conductance of water through the soil-plant-atmosphere continuum. Most vineyard water use models currently estimate vine transpiration by applying generic crop coefficients to estimates of reference evapotranspiration, but this does not account for changes in vine conductance associated with water stress, nor differences thought to exist between varieties. The response of bulk stomatal conductance to daily weather variability and seasonal drought stress was studied on Cabernet-Sauvignon, Merlot, Tempranillo, Ugni blanc, and Semillon vines in a non-irrigated vineyard in Bordeaux France. Whole vine sap flow, temperature and humidity in the vine canopy, and net radiation absorbed by the vine canopy were measured on 15-minute intervals from early July through mid-September 2020, together with periodic measurement of leaf area, canopy porosity, and predawn leaf water potential. From this data, bulk stomatal conductance was calculated on 15-minute intervals, and multiple regression analysis was performed to identify key variables and their relative effect on conductance. Attention was focused on addressing multicollinearity and time-dependency in the explanatory variables and developing regression models that were readily interpretable. Variability of vapor pressure deficit over the day, and predawn water potential over the season explained much of the variability in conductance, with relative differences in response coefficients observed across the five varieties. By characterizing this conductance response, the dynamics of vine transpiration can be better parameterized in vineyard water use modeling of current and future climate scenarios.

Waste valorization in winery and distillery industry by producing biofertilizers and organic amendments

The winery and distilling spirits industry generate a remarkable amount of by-products and wasted, that are not properly managed, posing socioeconomic problems and environmental risks, due to its seasonal and polluting characteristics.