IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 New understanding on sulfites reactivity in wine

New understanding on sulfites reactivity in wine

Abstract

Sulfur dioxide is widely used during winemaking as an antioxidant and antimicrobial agent. Bisulfite (HSO3−), the predominant form of SO2 at wine pH, reacts with several wine components forming sulfonated adducts. Up to now, the compounds that react with SO2 are categorized into strong and weak binders, depending on the stability of the sulfonated adducts that they produce, meaning that compared to the strong binders, weak binders release easily SO2, and under oxidation conditions, they become a pool of free SO2 that will contribute later to wine’s oxidative stability. Carbonyl compounds have been well studied regarding their reaction with SO2, in contrast to peptides and sulfur containing compounds. In this work, 1H NMR spectroscopy has been used in order to monitor directly under wine-like acidic conditions, the kinetics of sulfonation reactions of carbonyls (acetaldehyde and pyruvic acid) and sulfur containing compounds (cysteine and glutathione) with different ratios of SO2 in aerobic and anaerobic conditions. These simulations of wine aging have shown first, that during aging sulfonation reactions to strong carbonyl binders are reversible inducing a decrease on total SO2 level. The dissociation of carbonyls from sulfites is occurred under all conditions. Second, thiol containing compounds appeared to play the key role as metabolic SO2 sink at the late stages of bottle aging. These, until now, unconsidered SO2 binders appeared stables under wine oxidation conditions and represent the truly waste fraction of sulfites during aging. This study puts under reconsideration the way of evaluating the strength of the SO2 binders and could possibly contribute to new strategies for SO2 management in winemaking.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Tachtalidou Sofia1, Spyros Apostolos2, Heinzmann Silke3, Sok Nicolas1, Noret Laurence1, Denat Frank4, Schmitt-Kopplin Philippe3, Gougeon Régis1 and Nikolantonaki Maria1

 1UMR PAM Université de Bourgogne/Agro Sup Dijon, Institut Universitaire de la Vigne et du Vin, Jules Guyot, 2 Rue Claude Ladrey, 21000, Dijon, France
2NMR Laboratory, Department of Chemistry, University of Crete, P.O. Box 2208, Voutes Campus, 71003, Heraklion, Crete, Greece
4Institut de Chimie Moléculaire de l’Université de Bourgogne, UMR 6302, CNRS, Université Bourgogne Franche-Comté, 21078 Dijon, France

Contact the author

Keywords

sulfur dioxide, acetaldehyde, glutathione, wine, oxidation

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Effect of soil type on Sauvignon blanc and Cabernet-Sauvignon wine style at different localities in South Africa

The wine producing regions of South Africa are characterized by climatic diversity. The Coastal Region has a Mediterranean climate, with a mean annual rainfall of c.

Kinetic investigations of the Gewürztraminer volatile organic compounds and color at different temperatures and pHs

Gewürztraminer is a well-known wine famous for its aroma profile, which is characterized by rose petals, cloves, lychees, and other tropical fruit notes.

Differences in metabolism among species and hybrids of the genus Saccharomyces during wine fermentation unveiled by multi-omic analysis 

Yeast species S. cerevisiae, S. uvarum, S. kudriavzevii and their hybrids present clear metabolic differences, even when we compared S. cerevisiae wine versus wild strain. These species and hybrids produced significantly higher amounts of glycerol, organic acids, 2,3-butanediol, and 2-phenyl ethanol and a reduction of the ethanol yield, properties very interesting in the sector to deal with climate change effects. To understand the existing differences, we have used several omics techniques to analyze the dynamics of the (intra- and extracellular) metabolomes and/or transcriptomes of representative strains of S. cerevisiae, S. uvarum, S. kudriavzevii, and hybrids.

Diagnosis of soil quality and evaluation of the impact of viticultural practices on soil biodiversity in a Southwestern France vineyard

The soil plays a pivotal role in the agroecological transition processes, due to its numerous implications in production support, water regulation, air and nutrient supply, and its function of reservoir for the major part of planet biodiversity. Therefore, soil quality and adequate soil management are key levers for an ecologically and economically sustainable viticulture. Gascogn’Innov (2017-2022) is an Operational Group funded by the European Innovation Partnership for Agriculture. As such, it gathered winegrowers from the south-west of France (Gascony), scientists, advisors and technicians, around a project focused on the biological functioning of viticultural soil and the design of better-adapted technical paths for soil protection.

Application de l’Analyse du Cycle de Vie (ACV) à un domaine viticole

Since 1980, Château de l’Éclair has belonged to SICAREX Beaujolais and has been involved in experimentation for the Beaujolais vineyards. However, it is a commercial estate with profitability and quality constraints, which means that it has to meet the growing environmental expectations of consumers. Given the number of practices claimed to be environment-friendly, it is sometimes difficult to prioritize actions.