IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 New understanding on sulfites reactivity in wine

New understanding on sulfites reactivity in wine

Abstract

Sulfur dioxide is widely used during winemaking as an antioxidant and antimicrobial agent. Bisulfite (HSO3−), the predominant form of SO2 at wine pH, reacts with several wine components forming sulfonated adducts. Up to now, the compounds that react with SO2 are categorized into strong and weak binders, depending on the stability of the sulfonated adducts that they produce, meaning that compared to the strong binders, weak binders release easily SO2, and under oxidation conditions, they become a pool of free SO2 that will contribute later to wine’s oxidative stability. Carbonyl compounds have been well studied regarding their reaction with SO2, in contrast to peptides and sulfur containing compounds. In this work, 1H NMR spectroscopy has been used in order to monitor directly under wine-like acidic conditions, the kinetics of sulfonation reactions of carbonyls (acetaldehyde and pyruvic acid) and sulfur containing compounds (cysteine and glutathione) with different ratios of SO2 in aerobic and anaerobic conditions. These simulations of wine aging have shown first, that during aging sulfonation reactions to strong carbonyl binders are reversible inducing a decrease on total SO2 level. The dissociation of carbonyls from sulfites is occurred under all conditions. Second, thiol containing compounds appeared to play the key role as metabolic SO2 sink at the late stages of bottle aging. These, until now, unconsidered SO2 binders appeared stables under wine oxidation conditions and represent the truly waste fraction of sulfites during aging. This study puts under reconsideration the way of evaluating the strength of the SO2 binders and could possibly contribute to new strategies for SO2 management in winemaking.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Tachtalidou Sofia1, Spyros Apostolos2, Heinzmann Silke3, Sok Nicolas1, Noret Laurence1, Denat Frank4, Schmitt-Kopplin Philippe3, Gougeon Régis1 and Nikolantonaki Maria1

 1UMR PAM Université de Bourgogne/Agro Sup Dijon, Institut Universitaire de la Vigne et du Vin, Jules Guyot, 2 Rue Claude Ladrey, 21000, Dijon, France
2NMR Laboratory, Department of Chemistry, University of Crete, P.O. Box 2208, Voutes Campus, 71003, Heraklion, Crete, Greece
4Institut de Chimie Moléculaire de l’Université de Bourgogne, UMR 6302, CNRS, Université Bourgogne Franche-Comté, 21078 Dijon, France

Contact the author

Keywords

sulfur dioxide, acetaldehyde, glutathione, wine, oxidation

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Yeast diversity in Vitis labrusca l. Ecosystems

Although there are detailed studies on the microbiota of Vitis vinifera L. grapes, little is known about the diversity of yeast communities present in non-vinifera Vitis ecosystems (i.e., grapes and spontaneously fermenting grape musts). Potentially scientific and/or enological valuable yeast strains from these non-vinifera Vitis ecosystems might never be isolated from V. vinifera L. Using a standard culture-dependent strategy, we studied the population of yeast species during initial stages of spontaneous fermentation of V. labrusca L. (Isabella) grape musts. Rare non-Saccharomyces yeast species were recognized in Isabella, including Candida azymoides, Pichia cecembensis, Candida californica, Candida bentonensis, Issatchenkia hanoiensis and Candida apicola.

Thermal risk assessment for viticulture using monthly temperature data

Temperature extremes affect grapevine physiology, as well as grape quality and production. In most grape growing regions, frost or heat wave events are rare and as such conducting a risk analysis using robust statistics makes the use of long term daily data necessary.

Downscaling of remote sensing time series: thermal zone classification approach in Gironde region 

In viticulture, the challenges of local climate modelling are multiple: taking into account the local environment, fine temporal and spatial scales, reliable time series of climate data, ease of implementation and reproducibility of the method. At the local scale, recent studies have demonstrated the contribution of spatialization methods for ground-based climate observation data considering topographic factors such as altitude, slope, aspect, and geographic coordinates (Le Roux et al, 2017; De Rességuier et al, 2020). However, these studies have shown questions in terms of the reproducibility and sustainability of this type of climate study. In this context, we evaluated the potential of MODIS thermal satellite images validated with ground-based climate data (Morin et al, 2020). Previous studies have been encouraging, but questions remain to be explored at the regional scale, particularly in the dynamics of the massive use of bioclimatic indices to classify the climate of wine regions. The results at the local scale were encouraging, but this approach was tested in the current study at the regional scale. Several objectives were set: 1) to evaluate the downscaling method for land surface temperature time series, 2) to identify regional thermal structure variations. We used weekly minimum and maximum surface temperature time series acquired by MODIS satellites at a spatial resolution of 1000 m and downscaled at 500 m using topographical variables. Two types of analyses were performed:

Soil preparation practices to eliminate soil restrictions to grapevine root distribution for the establishment of sustainable vineyards

Grapevine yield and wine quality are dependent on good quality vegetative growth and root development. Soils that restrict proper grapevine root development, together with the high cost of establishing a new vineyard, require effective soil preparation to sustain productive vineyards for 25 years. This study reviews soil preparation research conducted over the past 50 years and identifies best practices to remove soil physical and chemical impediments to create optimum conditions for root growth.

Stomatal abundance in grapevine: developmental genes, genotypic variation, and physiology

Grapevine cultivation is threatened by the global warming, which combines high temperatures and reduced rainfall, impacting in wine quality and even plant survival. Breeding for varieties resilient to these challenges must address plant traits such as tolerance to supraoptimal temperatures and optimized water use efficiency while minimizing productivity and quality losses. Stomatal abundance (SA) determines the maximum leaf potential for transpiration and thus water loss and cooling. Since SA results from a developmental process during leaf emergence and growth, knowledge on the genetic control of this process would provide specific targets for modification.