IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Factors involved in the acumulation of acetic acid inside the grapes during winemaking by carbonic maceration

Factors involved in the acumulation of acetic acid inside the grapes during winemaking by carbonic maceration

Abstract

Vinification by carbonic maceration (CM) is based in the anaerobic fermentative metabolism also called intracellular fermentation (IF). It happens inside the whole grapes by its own enzymes when they are subjected to anaerobic conditions. The vinification conditions favour microbiological development, and sometimes, a great accumulation of acetic acid. In the present work we studied the effect of both temperature and the type of carbonic anhydride applied to the tanks (exogenous gas or generated by fermentation) on intracellular fermentation in order to minimize the increase in volatile acidity in CM vinification.
In this work, eight vinifications were carried out in 12-liter stainless steel tanks in order to study four vinification conditions in duplicate: Inoculation with a commercial active dry yeast (ADY) Saccharomyces cerevisae to generate the necessary CO2 for the development of the anaerobic conditions at 20°C (I20) and 30°C (I30); and addition of industrial CO2 to the tanks before filling at 20°C (C20) and 30°C (C30). Every 2-3 days (days 1, 4, 6, 8 and 11) 10 whole berries were randomly collected from each tank. The grapes were crushed to obtain the must-wine, where the content of acetic acid was analysed throughout the time in the vat. The tanks were devatted when the alcoholic fermentation of the liquid was finished (6 days in I30, 8 days in I20 and C30, and 12 days in C20).
The accumulation of acetic acid was greater at higher temperatures, both in the inoculated deposits and in those added with exogenous CO2. However, this does not imply that the final wines have higher volatile acidity because at fermentation temperatures of 30°C it would produce an earlier drawing off. The accumulation of acetic acid in grapes over time was also greater in deposits added with industrial CO2. At the moment of devatting, the must-wines with less volatile acidity were the inoculated ones.
In conclusion, proofs carried out in different CM conditions showed that the drawing off moment is an influential factor on the content of acetic acid inside the grapes and, therefore could play an important role in the characteristics of the CM wines obtained. In addition, the inoculation with ADY as a method of generating anaerobiosis, helps to minimize the accumulation of acetic acid inside the whole grapes during the vat. Finally, it is also important to maintain a high temperature of grapes during the period in the vat because it makes vat time shorter.
This study has been co-funded (50/50) by the European Regional Development Fund (ERDF) and the Government of La Rioja, within the ERDF operational program of La Rioja 2014-2020. It also has been financed by MCIN/AEI 10.13039/501100011033, Project RTI2018-096051.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Poster

Authors

Santamaría Pilar1, González-Arenzana Lucía1, Escribano-Viana Rocío1, Garijo Patrocinio1, Sanz Susana2, Gutiérrez Ana Rosa1

1ICVV, Instituto de ciencias de la Vid y el Vino
2Universidad de La Rioja

Contact the author

Keywords

carbonic maceration, anaerobiosis, temperature, inoculation, acetic acid, acetaldehyde

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

The Shield4Grape project to improve the sustainability of European viticulture

Grapevine (vitis spp.) Is one of the major and most economically important fruit crops worldwide. Unlike other cropping systems, viticulture has ancient historical connections with the development of human culture and with the socio-cultural background of grape-growing areas. The vitis genus is characterised by high levels of genetic diversity, as result of natural genetic mutations, which are common in grapevines and further assisted by ongoing vegetative propagation.

IMPACT OF NEW BIO STIMULANTS ON GRAPE SECONDARY METABOLITES UNDER CLIMATE CHANGE CONDITIONS

In a context of climate change and excessive use of agrochemical products, sustainable approaches for environmental and human health such as the use of bio stimulants in viticulture represent a potential option, against abiotic and biotic threats. Bio stimulants are organic compounds, microbes, or a combination of both, that stimulate plant’s vital processes, allowing high yields and good quality products. In vines, may trigger an innate immune response leading to the synthesis of secondary metabolites, key compounds for the organoleptic properties of grapes and wines.

Grape berry size is a key factor in determining New Zealand Pinot noir wine composition

Making high quality but affordable Pinot noir (PN) wine is challenging in most terroirs and New Zealand’s (NZ) situation is no exception. To increase the probability of making highly typical PN wines producers choose to grow grapes in cool climates on lower fertility soils while adopting labour intensive practices. Stringent yield targets and higher input costs necessarily mean that PN wine cost is high, and profitability lower, in line-priced varietal wine ranges. To understand the reasons why higher yielding vines are perceived to produce wines of lower quality we have undertaken an extensive study of PN in NZ. Since 2018, we established a network of twelve trial sites in three NZ regions to find individual vines that produced acceptable commercial yields (above 2.5kg per vine) and wines of composition comparable to “Icon” labels. Approximately 20% of 660 grape lots (N = 135) were selected from within a narrow juice Total Soluble Solids (TSS) range and made into single vine wines under controlled conditions. Principal Component Analysis of the vine, berry, juice and wine parameters from three vintages found grape berry mass to be most effective clustering variable. As berry mass category decreased there was a systematic increase in the probability of higher berry red colour and total phenolics with a parallel increase in wine phenolics, changed aroma fraction and decreased juice amino acids. The influence of berry size on wine composition would appear stronger than the individual effects of vintage, region, vineyard or vine yield. Our observations support the hypothesis that it is possible to produce PN wines that fall within an “Icon” benchmark composition range at yields above 2.5kg per vine provided that the Leaf Area:Fruit Weight ratio is above 12cm2 per g, mean berry mass is below 1.2g and juice TSS is above 22°Brix.

Global warming effects on grape growing climate zones within the Rioja Appllation (DOCa Rioja) in north Spain

Aims: The aims of this work were (1) to assess the changes in some of the main bioclimatic indices used for climate viticultural zoning within the Rioja Appellation area in the north of Spain between 1950-2014 (60 years), and (2) to carry out a comprehensive sociological evaluation among grapegrowers and winemakers of this region, to better understand the impact of climate change on their activity, their degree of concern about it and the potential adaptation measures they would be willing to adopt to cope with it in future years.

The rootstock, the neglected player in the scion transpiration even during the night

Water is the main limiting factor for yield in viticulture. Improving drought adaptation in viticulture will be an increasingly important issue under climate change. Genetic variability of water deficit responses in grapevine partly results from the rootstocks, making them an attractive and relevant mean to achieve adaptation without changing the scion genotype. The objective of this work was to characterize the rootstock effect on the diurnal regulation of scion transpiration. A large panel of 55 commercial genotypes were grafted onto Cabernet Sauvignon. Three biological repetitions per genotype were analyzed. Potted plants were phenotyped on a greenhouse balance platform capable of assessing real-time water use and maintaining a targeted water deficit intensity. After a 10 days well-watered baseline period, an increasing water deficit was applied for 10 days, followed by a stable water deficit stress for 7 days. Pruning weight, root and aerial dry weight and transpiration were recorded and the experiment was repeated during two years. Transpiration efficiency (ratio between aerial biomass and transpiration) was calculated and δ13C was measured in leaves for the baseline and stable water deficit periods. A large genetic variability was observed within the panel. The rootstock had a significant impact on nocturnal transpiration which was also strongly and positively correlated with maximum daytime transpiration. The correlations with growth and water use efficiency related traits will be discussed. Transpiration data were also related with VPD and soil water content demonstrating the influence of environmental conditions on transpiration. These results highlighted the role of the rootstock in modulating water deficit responses and give insights for rootstock breeding programs aimed at identifying drought tolerant rootstocks. It was also helpful to better define the mechanisms on which the drought tolerance in grapevine rootstocks is based on.