IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Factors involved in the acumulation of acetic acid inside the grapes during winemaking by carbonic maceration

Factors involved in the acumulation of acetic acid inside the grapes during winemaking by carbonic maceration

Abstract

Vinification by carbonic maceration (CM) is based in the anaerobic fermentative metabolism also called intracellular fermentation (IF). It happens inside the whole grapes by its own enzymes when they are subjected to anaerobic conditions. The vinification conditions favour microbiological development, and sometimes, a great accumulation of acetic acid. In the present work we studied the effect of both temperature and the type of carbonic anhydride applied to the tanks (exogenous gas or generated by fermentation) on intracellular fermentation in order to minimize the increase in volatile acidity in CM vinification.
In this work, eight vinifications were carried out in 12-liter stainless steel tanks in order to study four vinification conditions in duplicate: Inoculation with a commercial active dry yeast (ADY) Saccharomyces cerevisae to generate the necessary CO2 for the development of the anaerobic conditions at 20°C (I20) and 30°C (I30); and addition of industrial CO2 to the tanks before filling at 20°C (C20) and 30°C (C30). Every 2-3 days (days 1, 4, 6, 8 and 11) 10 whole berries were randomly collected from each tank. The grapes were crushed to obtain the must-wine, where the content of acetic acid was analysed throughout the time in the vat. The tanks were devatted when the alcoholic fermentation of the liquid was finished (6 days in I30, 8 days in I20 and C30, and 12 days in C20).
The accumulation of acetic acid was greater at higher temperatures, both in the inoculated deposits and in those added with exogenous CO2. However, this does not imply that the final wines have higher volatile acidity because at fermentation temperatures of 30°C it would produce an earlier drawing off. The accumulation of acetic acid in grapes over time was also greater in deposits added with industrial CO2. At the moment of devatting, the must-wines with less volatile acidity were the inoculated ones.
In conclusion, proofs carried out in different CM conditions showed that the drawing off moment is an influential factor on the content of acetic acid inside the grapes and, therefore could play an important role in the characteristics of the CM wines obtained. In addition, the inoculation with ADY as a method of generating anaerobiosis, helps to minimize the accumulation of acetic acid inside the whole grapes during the vat. Finally, it is also important to maintain a high temperature of grapes during the period in the vat because it makes vat time shorter.
This study has been co-funded (50/50) by the European Regional Development Fund (ERDF) and the Government of La Rioja, within the ERDF operational program of La Rioja 2014-2020. It also has been financed by MCIN/AEI 10.13039/501100011033, Project RTI2018-096051.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Poster

Authors

Santamaría Pilar1, González-Arenzana Lucía1, Escribano-Viana Rocío1, Garijo Patrocinio1, Sanz Susana2, Gutiérrez Ana Rosa1

1ICVV, Instituto de ciencias de la Vid y el Vino
2Universidad de La Rioja

Contact the author

Keywords

carbonic maceration, anaerobiosis, temperature, inoculation, acetic acid, acetaldehyde

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Effect of oenological tannins on wine aroma before and after oxidation: a real-time study by coupling sensory (TDS) and chemical (PTR-ToF-MS) analyses

Polyphenols are important compounds involved in many chemical and sensory wine features. In winemaking, adding oenological tannins claims to have positive impacts on wine stability, protection from oxidation and aroma persistence. Polyphenols are antioxidant compounds by either scavenging reactive oxygen and nitrogen species or chelating Fe2+ ions (1). However, as tannins oxidation leads to the formation of highly reactive species (i.e. ortho-quinones), it is still unclear if they have an effective role toward oxidation of wine aromas (2). In this work, we aim at studying the effect of two commercial tannins (proanthocyanidins, ellagitannins) on red wine flavour (mainly aroma) before and after air exposition.

The relationship between enzyme treatment and polysaccharide extraction in wine making, and subsequent sensory effects in Cabernet Sauvignon wines

AIM To determine the effect of both ripeness and enzyme maceration on the astringency and bitterness perception of Cabernet Sauvignon winesRecent work has contributed to a more detailed understanding of the grape cell wall deconstruction process from ripening through crushing and fermentation, providing a better understanding of what role polysaccharides play in post-harvest fermentation of grapes(1,2). Current research on glycomics in red wine making suggest polysaccharides are important sensory impact molecules (3–6). METHODSOur experimental system harvests Cabernet Sauvignon grapes at three different ripeness levels and makes wine both with and without enzyme treatment.

IMPACT OF METSCHNIKOWIA PULCHERRIMA DURING FERMENTATION ON AROMATIC PROFILE OF VIDAL BLANC ICEWINE

Non-Saccharomyces yeasts not only increase microbial diversity during wine fermentation, but also have a positive effect on improving wine aroma. Among these non-Saccharomyces yeast species, Metschnikowia pulcherrima is often studied and used in winemaking in recent years, but its application in icewine has been rarely reported. In this study, indigenous M. pulcherrima strains and Saccharomyces cerevisiae strains (commercial and indigenous strains) were sequentially inoculated for icewine fermentations; meanwhile, pure S. cerevisiae fermentations were used as the control; indigenous strains used above were screened from spontaneous fermentations of Vidal blanc icewine.

EXPLORING RED WINE TYPICITY OF CORBIÈRES: EVALUATION OF THE DEGREE OF IMPACT OF VINIFICATION PROCESS ON THE CHEMICAL COMPOSITION AND ORGANOLEPTIC PROPERTIES OF WINES FROM DIFFERENT TERROIR

It is important nowadays for wine producers to create a product that is an expression of their terroir, a concept including the interaction between a place (topography, climate, soil), the people (tradition, winemaking and viticultural practices) and the resulting product (grape varieties, wines) [1]. Nonetheless, wine’s typicity linked to those terroirs must be easily recognizable by consumers thanks to distinctive sensory characters and composition [2]. Among the compounds of interest, aromatic compounds and polyphenols play an important role in the quality of red wines, by impacting on the odour, color and astringency. To explore the influence of terroir factors, including climate, soil and human practices, on the chemical and sensory profile of wines, red wines from five terroirs of the Corbières appellation were subjected to a general study approach.

Using nanopore skim-sequencing to characterise regional epigenetic variability in New Zealand Sauvignon Blanc

Recent advancements in genomic sequencing technologies have enabled more detailed and direct studies of DNA methylation, which can help characterise epigenetic variations in plants. The Grapevine Improvement team at the Bragato Research Institute is studying the use of Oxford Nanopore sequencing to identify epigenetic changes associated with environmental differences among clonally-propagated grapevines.

This study involved sequencing DNA from the same Sauvignon Blanc clone, sourced from diverse New Zealand viticultural regions, using the PromethION platform.