IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Factors involved in the acumulation of acetic acid inside the grapes during winemaking by carbonic maceration

Factors involved in the acumulation of acetic acid inside the grapes during winemaking by carbonic maceration

Abstract

Vinification by carbonic maceration (CM) is based in the anaerobic fermentative metabolism also called intracellular fermentation (IF). It happens inside the whole grapes by its own enzymes when they are subjected to anaerobic conditions. The vinification conditions favour microbiological development, and sometimes, a great accumulation of acetic acid. In the present work we studied the effect of both temperature and the type of carbonic anhydride applied to the tanks (exogenous gas or generated by fermentation) on intracellular fermentation in order to minimize the increase in volatile acidity in CM vinification.
In this work, eight vinifications were carried out in 12-liter stainless steel tanks in order to study four vinification conditions in duplicate: Inoculation with a commercial active dry yeast (ADY) Saccharomyces cerevisae to generate the necessary CO2 for the development of the anaerobic conditions at 20°C (I20) and 30°C (I30); and addition of industrial CO2 to the tanks before filling at 20°C (C20) and 30°C (C30). Every 2-3 days (days 1, 4, 6, 8 and 11) 10 whole berries were randomly collected from each tank. The grapes were crushed to obtain the must-wine, where the content of acetic acid was analysed throughout the time in the vat. The tanks were devatted when the alcoholic fermentation of the liquid was finished (6 days in I30, 8 days in I20 and C30, and 12 days in C20).
The accumulation of acetic acid was greater at higher temperatures, both in the inoculated deposits and in those added with exogenous CO2. However, this does not imply that the final wines have higher volatile acidity because at fermentation temperatures of 30°C it would produce an earlier drawing off. The accumulation of acetic acid in grapes over time was also greater in deposits added with industrial CO2. At the moment of devatting, the must-wines with less volatile acidity were the inoculated ones.
In conclusion, proofs carried out in different CM conditions showed that the drawing off moment is an influential factor on the content of acetic acid inside the grapes and, therefore could play an important role in the characteristics of the CM wines obtained. In addition, the inoculation with ADY as a method of generating anaerobiosis, helps to minimize the accumulation of acetic acid inside the whole grapes during the vat. Finally, it is also important to maintain a high temperature of grapes during the period in the vat because it makes vat time shorter.
This study has been co-funded (50/50) by the European Regional Development Fund (ERDF) and the Government of La Rioja, within the ERDF operational program of La Rioja 2014-2020. It also has been financed by MCIN/AEI 10.13039/501100011033, Project RTI2018-096051.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Poster

Authors

Santamaría Pilar1, González-Arenzana Lucía1, Escribano-Viana Rocío1, Garijo Patrocinio1, Sanz Susana2, Gutiérrez Ana Rosa1

1ICVV, Instituto de ciencias de la Vid y el Vino
2Universidad de La Rioja

Contact the author

Keywords

carbonic maceration, anaerobiosis, temperature, inoculation, acetic acid, acetaldehyde

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Anticipating consumer preference for low-alcohol wine: a machine learning analysis based on consumption habits and socio-demographics

The global wine consumption landscape is undergoing a transformation, marked by a growing trend towards reduced consumption and a preference for healthier lifestyles. In line with this shift, european union regulation (regulation eu 2021/2117) has recently redefined dealcoholized or partially dealcoholized wine within the wine category.

Valorisation agroviticole de l’effet terroir par l’enherbement des sols

The studies developed by INRA and UV, in Angers, concern wine-growing areas and their optimized management, both from an agro-viticultural and oenological point of view. Previous work (Morlat, 1989) made it possible to give a scientific dimension to the concept of viticultural terroir and demonstrated the considerable influence of this production factor on the quality and typicity of wines (Asselin et al, 1992 ) . A methodology for the integrated characterization of terroirs, based on the “Basic Terroir Natural Unit” (considered as the smallest spatial unit of territory usable in practice, and in which the response of the vine is homogeneous), has been development (Riou et al , 1995).

Formation And Evolution Of Minty Terpenoids During Model Ageing Of Cabernet Franc And Merlot Wines

In recent years, a pool of terpenoids possibly implicated in minty odours and in the appreciable refreshing sensation, has been identified in long aged red Bordeaux wines (Lisanti et al., 2021, Picard et al., 2016; Picard et al., 2017). These compounds were found to play a key role in the so-called “ageing bouquet”, that can be defined as “the homogeneous, harmonious flavour resulting from the complex transformation process in wine during bottle storage” (Picard et al., 2015). Moreover the minty-fresh sensory dimension in fine aged red wines plays an important role in typicity judgement by wine professionals (Picard et al., 2015).

Geological influences on terroir development

Geological influences on terroir development

Berry carbon (δ13C) and nitrogen (δ15N) isotopic ratio reflects within farm terroir diffferences

ÂThe natural abundance of carbon stable isotopes has been reported to be related to water availability in grapevines quite widely. In the case of nitrogen, the natural abundance of its stable isotopes is mainly affected by the nature of the source of nitrogen (organic vs. inorganic) used by the plant, though the bibliography available for grapevine is very scarce.