IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Factors involved in the acumulation of acetic acid inside the grapes during winemaking by carbonic maceration

Factors involved in the acumulation of acetic acid inside the grapes during winemaking by carbonic maceration

Abstract

Vinification by carbonic maceration (CM) is based in the anaerobic fermentative metabolism also called intracellular fermentation (IF). It happens inside the whole grapes by its own enzymes when they are subjected to anaerobic conditions. The vinification conditions favour microbiological development, and sometimes, a great accumulation of acetic acid. In the present work we studied the effect of both temperature and the type of carbonic anhydride applied to the tanks (exogenous gas or generated by fermentation) on intracellular fermentation in order to minimize the increase in volatile acidity in CM vinification.
In this work, eight vinifications were carried out in 12-liter stainless steel tanks in order to study four vinification conditions in duplicate: Inoculation with a commercial active dry yeast (ADY) Saccharomyces cerevisae to generate the necessary CO2 for the development of the anaerobic conditions at 20°C (I20) and 30°C (I30); and addition of industrial CO2 to the tanks before filling at 20°C (C20) and 30°C (C30). Every 2-3 days (days 1, 4, 6, 8 and 11) 10 whole berries were randomly collected from each tank. The grapes were crushed to obtain the must-wine, where the content of acetic acid was analysed throughout the time in the vat. The tanks were devatted when the alcoholic fermentation of the liquid was finished (6 days in I30, 8 days in I20 and C30, and 12 days in C20).
The accumulation of acetic acid was greater at higher temperatures, both in the inoculated deposits and in those added with exogenous CO2. However, this does not imply that the final wines have higher volatile acidity because at fermentation temperatures of 30°C it would produce an earlier drawing off. The accumulation of acetic acid in grapes over time was also greater in deposits added with industrial CO2. At the moment of devatting, the must-wines with less volatile acidity were the inoculated ones.
In conclusion, proofs carried out in different CM conditions showed that the drawing off moment is an influential factor on the content of acetic acid inside the grapes and, therefore could play an important role in the characteristics of the CM wines obtained. In addition, the inoculation with ADY as a method of generating anaerobiosis, helps to minimize the accumulation of acetic acid inside the whole grapes during the vat. Finally, it is also important to maintain a high temperature of grapes during the period in the vat because it makes vat time shorter.
This study has been co-funded (50/50) by the European Regional Development Fund (ERDF) and the Government of La Rioja, within the ERDF operational program of La Rioja 2014-2020. It also has been financed by MCIN/AEI 10.13039/501100011033, Project RTI2018-096051.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Poster

Authors

Santamaría Pilar1, González-Arenzana Lucía1, Escribano-Viana Rocío1, Garijo Patrocinio1, Sanz Susana2, Gutiérrez Ana Rosa1

1ICVV, Instituto de ciencias de la Vid y el Vino
2Universidad de La Rioja

Contact the author

Keywords

carbonic maceration, anaerobiosis, temperature, inoculation, acetic acid, acetaldehyde

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

The impact of cell wall composition of the extraction of anthocyanins and tannins from grape berries

Extraction of anthocyanins and tannins have been studied for two grape varieties, Carignan and Grenache, two maturation levels and two vintages, in model solutions and in wines, using UHPLC-MS/MS in the MRM mode  and HPSEC.

Optimizing protocol for a rapid and cost effective DNA isolation for Marker Assisted Selection pipeline

Grapevine is a plant that holds significant socioeconomic importance due to its production of grapes for fresh consumption, wines, and juices. However, climate changes and susceptibility to diseases pose a threat to the quality and yield of these products. The breeding of new genotypes that are resistant/tolerant to biotic and abiotic stresses is essential to overcome the impact of climate changes. In this regard, Marker-assisted selection (MAS), which uses DNA markers, is a crucial tool in breeding programs. The efficiency and economy of this method depend on finding rapid DNA isolation methods.

Under-row low competitive herbaceous cover: A sustainable alternative to herbicide in vineyards

Weeds are undesirable plants in agroecosystems as they compete with the crop for essential resources such as light, water and nutrients, compromising the final yield and its quality.

YEAST-PRODUCED VOLATILES IN GRAPE BASED SYSTEM MODEL ACTING AS ANTIFUNGAL BIOAGENTS AGAINST PHYTOPATHOGEN BOTRYTIS CINEREA

Botrytis cinerea Pers., the causal agent of grey mould disease, is responsible for substantial economic losses, as it causes reduction of grape and wine quality and quantity. Exploitation of antagonistic yeasts is a promising strategy for controlling grey mould incidence and limiting the usage of synthetic fungicides. In our previous studies, 119 different indigenous yeasts were screened for putative multidimensional modes of action against filamentous fungus B. cinerea [1]. The most promissing biocontrol yeast was Pichia guilliermondii ZIM624, which exhibited several anatagonistic traits (production of cell wall degrading enzymes, chitinase and β-1,3-glucanase; demonstration of in vitro inhibitory effect on B. cinerea mycelia radial growth; production of antifungal volatiles, assimilation of a broad diversity of carbon sources, contributing to its competitivnes in inhabiting grapes in nature).

Generation and characterization of a training population in Vitis vinifera for enhanced genomic selection

Context and purpose of the study. Modern viticulture is facing significant challenges due to global climate changes, spanning from extreme heat spells and water scarcity to the acceleration of grapevine’s phenological development with important consequences from budbreak to harvest.