IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Factors involved in the acumulation of acetic acid inside the grapes during winemaking by carbonic maceration

Factors involved in the acumulation of acetic acid inside the grapes during winemaking by carbonic maceration

Abstract

Vinification by carbonic maceration (CM) is based in the anaerobic fermentative metabolism also called intracellular fermentation (IF). It happens inside the whole grapes by its own enzymes when they are subjected to anaerobic conditions. The vinification conditions favour microbiological development, and sometimes, a great accumulation of acetic acid. In the present work we studied the effect of both temperature and the type of carbonic anhydride applied to the tanks (exogenous gas or generated by fermentation) on intracellular fermentation in order to minimize the increase in volatile acidity in CM vinification.
In this work, eight vinifications were carried out in 12-liter stainless steel tanks in order to study four vinification conditions in duplicate: Inoculation with a commercial active dry yeast (ADY) Saccharomyces cerevisae to generate the necessary CO2 for the development of the anaerobic conditions at 20°C (I20) and 30°C (I30); and addition of industrial CO2 to the tanks before filling at 20°C (C20) and 30°C (C30). Every 2-3 days (days 1, 4, 6, 8 and 11) 10 whole berries were randomly collected from each tank. The grapes were crushed to obtain the must-wine, where the content of acetic acid was analysed throughout the time in the vat. The tanks were devatted when the alcoholic fermentation of the liquid was finished (6 days in I30, 8 days in I20 and C30, and 12 days in C20).
The accumulation of acetic acid was greater at higher temperatures, both in the inoculated deposits and in those added with exogenous CO2. However, this does not imply that the final wines have higher volatile acidity because at fermentation temperatures of 30°C it would produce an earlier drawing off. The accumulation of acetic acid in grapes over time was also greater in deposits added with industrial CO2. At the moment of devatting, the must-wines with less volatile acidity were the inoculated ones.
In conclusion, proofs carried out in different CM conditions showed that the drawing off moment is an influential factor on the content of acetic acid inside the grapes and, therefore could play an important role in the characteristics of the CM wines obtained. In addition, the inoculation with ADY as a method of generating anaerobiosis, helps to minimize the accumulation of acetic acid inside the whole grapes during the vat. Finally, it is also important to maintain a high temperature of grapes during the period in the vat because it makes vat time shorter.
This study has been co-funded (50/50) by the European Regional Development Fund (ERDF) and the Government of La Rioja, within the ERDF operational program of La Rioja 2014-2020. It also has been financed by MCIN/AEI 10.13039/501100011033, Project RTI2018-096051.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Poster

Authors

Santamaría Pilar1, González-Arenzana Lucía1, Escribano-Viana Rocío1, Garijo Patrocinio1, Sanz Susana2, Gutiérrez Ana Rosa1

1ICVV, Instituto de ciencias de la Vid y el Vino
2Universidad de La Rioja

Contact the author

Keywords

carbonic maceration, anaerobiosis, temperature, inoculation, acetic acid, acetaldehyde

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Critical investigation on additions to improve the sensory characteristics of dealcoholized wine

The demand for dealcoholized wine has been progressively increasing in recent years. Moreover, the attention for such products is probably increasing even more. Due to that increasing demand and market awareness the legal authorities are about changing rules for that products. Also, at OIV level, these products are being intensively discussed for certain time. The production of dealcoholized wine bases on wine as initial product. This wine is then reduced by physical methods to an alcohol content of less than 0.5% vol., or in other words, to less than 4g/l of alcohol. There are various technologies are possible for producing dealcoholized wine (Schmitt and Christmann 2019).

Analytical and Chemometric Investigation of Phenolic Content of South African Red Wines

Phenolic compounds have been the focus of a lot of research in recent years for their important contribution to sensory characteristics of wine, their beneficial health effects, as well as the possibility they offer of characterising wines. In this contribution, a method is developed that allows the direct injection of wine samples followed by liquid

A multidisciplinary approach to grapevine zoning G.I.S. technology based: an example of thermal data elaboration

Un grand nombre d’études ont été consacrées à l’évaluation quantitative des effets de climat sur la qualité des vignes, dans différents contextes climatiques. Généralement, la vocation viticole d’un terroire peut être étudiée par des approches mono ou multidisciplinaires.

Wine tannins: What place for grape seed?

Phenolic compounds are among the most important quality factors of wines. They contribute to the organoleptic characteristics of wine such as colour, astringency, and bitterness. Although tannins found in wine can come from microbial and oak sources, the main sources of polyphenols are skin and seed from grapes. Yet, the link between grape seed phenolic content and wine composition, or even the link between seed maturity stage and wine composition are poorly studied. This work describes and explains the seed tannins kinetics release in wine, but also the impact of seed maturity stage on seed tannins extractability.

Simulating the impact of climate change on grapevine behaviour and viticultural activities

Global climate change affects regional climates and hold implications for wine growing regions worldwide