terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Effect of foliar application of urea and nano-urea on the cell wall of Monastrell grape skins

Effect of foliar application of urea and nano-urea on the cell wall of Monastrell grape skins


The foliar application of urea has been shown to be able to satisfy the specific nutritional needs of the vine as well as to increase the nitrogen composition of the must. On the other hand, the use of nanotechnology could be of great interest in viticulture as it would help to slow down the release of urea and protect it against possible degradation. Several studies indicate that cell wall synthesis and remodeling are affected by nitrogen availability.

The study was carried out over three years (2019, 2020 and 2021), the effect on the main components of the cell wall of Monastrell grape skins was compared to control after foliar treatments with urea and nano-urea. The treatments, in triplicate, were manually applied with a spray dispenser.

The proportion of isolated cell wall was increased in both treatments every year. This rise would indicate a thickening of the cell walls. Proteins were enhanced in 2019 and 2021 in grapes from the two treatments, whereas in 2020 they were not modified. Phenolic compounds were not affected in 2019, decreasing in the nano-urea treatment in 2020 and in the urea treatment in 2021. Cellulose was diminished in 2019 in the nano-urea treatment and in both treatments in 2021, but was not affected in 2020. Hemicellulose was increased for both treatments in both 2019 and 2021, but only for urea in 2020. Finally, uronic acids were lower compared to control for both treatments in 2019, but raise in the two subsequent years.

In conclusion, the cell wall was modified by both treatments, which may have implications on its rigidity and therefore on the extraction of the compounds of interest present in the grape skins. The treatments applied in the form of nano-urea had comparable effects to those obtained with urea in the conventional way, despite being applied at a significantly lower dose.

Acknowledgements: To all the staff of Estación Enológica de Jumilla


Publication date: October 3, 2023

Issue: ICGWS 2023

Type: Article


María José Giménez-Bañón1*, Diego Fernando Paladines-Quezada1, Juan Daniel Moreno-Olivares1, Belén Parra-Torrejón2, Juan Antonio Bleda-Sánchez1, Gloria-Belén Ramírez-Rodríguez2, José Manuel Delgado-López2, Rocío Gil-Muñóz1

1Instituto Murciano de Investigación y Desarrollo Agrario y Medioambiental
2Departamento de Química Inorgánica. Facultad de Ciencias. Universidad de Granada

Contact the author*


nanotechnology, nitrogen, fertilization, protein, phenolic-compound, cellulose, uronic-acids


2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series


Related articles…

The characterization of Vitis vinifera L cv. Cabernet sauvignon: the contribution of Ecklonia maxima seaweed extract

Biostimulants and biofertilizers are considered environmentally friendly and cost-effective alternatives to synthetic fertilizers, plant growth regulators and crop improvement products. Broadly, plant biostimulants are expected to improve nutrient use efficiency, tolerance to abiotic stress, quality traits and availability of nutrients in the soil or rhizosphere. Currently, seaweed extracts account for more than 33% of the total plant biostimulant market. Within this category, Ascophyllum nodosum (AN), is the most widely studied and applied in biostimulant formulations.

Performance of Selected Uruguayan Native Yeasts for Tannat Wine Production at Pilot Scale

The wine industry is increasing the demand for indigenous yeasts adapted to the terroir to produce unique wines that reflect the distinctive characteristics of each region. In our group, we have identified and characterized 60 native yeast strains isolated from a vineyard in Maldonado-Uruguay, in which three strains stood out: Saccharomyces cerevisiae T193FS, Saturnispora diversa T191FS, and Starmerella bacillaris T193MS. Their oenological potential was evaluated at a semi-pilot scale in Tannat must vinification in the wine cellar to have a more precise and representative evaluation of the final product.

Toasting and grain effect on Tempranillo red wine aged in Quercus petraea barrels

The barrel-making process is widely recognized as a crucial practice that affects the composition of barrel-aged wine. After the drying process, the staves are considered ready for barrel assembly, which includes the processes of bending and toasting the barrel structure. Toasting is considered one of the most critical stages in determining the physical and chemical composition of the staves, which can influence the chemical and sensory composition of the wine aged in barrels made from them [1].

Effect of two water deficit regimes on the agronomic response of 12 grapevine varieties cultivated in a semi-arid climate

The Mediterranean basin is one of the most vulnerable regions to Climate Change effects. According to unanimous forecasts, the vineyards of Castilla-La Mancha will be among the most adversely affected by rising temperatures and water scarcity during the vine’s vegetative period. One potential strategy to mitigate the negative impacts of these changes involves the identification of grapevine varieties with superior water use efficiency, while ensuring satisfactory yields and grape quality.

Molecularly imprinted polymers: an innovative strategy for harvesting polyphenoles from grape seed extracts

Multiple sclerosis (MS) is a multifactorial autoimmune disease associating demyelination and axonal degeneration developing in young adults and affecting 2–3 million people worldwide. Plant polyphenols endowed with many therapeutic benefits associated with anti-inflammatory and antioxidant properties represent highly interesting new potential therapeutic strategies. We recently showed the safety and high efficiency of grape seed extract (GSE), a complex mixture of polyphenolics compounds comprising notably flavonoids and proanthocyanidins, in an experimental autoimmune encephalomyelitis (EAE) mouse model of MS.