IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Unveiling the unknow aroma potential of Port wine fortification spirit taking advantage of the comprehensive two-dimensional gas chromatography

Unveiling the unknow aroma potential of Port wine fortification spirit taking advantage of the comprehensive two-dimensional gas chromatography

Abstract

Port wine is a fortified wine exclusively produced in the Douro Appellation (Portugal) under very specific conditions resulting from natural and human factors. Its intrinsic aroma characteristics are modulated upon a network of factors, such as the terroir, varieties and winemaking procedures that include a wide set of steps, namely the fortification with grape spirit (ca. 77% v/v ethanol). The fortification spirit comprises roughly one fifth of the total volume of this fortified wine, thus it is a potential contributor to the global quality of this beverage, including the aroma notes. Nonetheless, the information about the influence of the fortification spirit on the final aroma of Port wine, as well as the grape spirit volatile composition are extremely limited. Therefore, the main objective of this research is the optimization of an adequate methodology for the in-depth characterization of the fortification grape spirit volatile components, based on the use of advanced gas chromatography (GC×GC-ToFMS), combined with a solvent free solid phase microextraction technique (SPME). To fulfil this objective, the SPME experimental parameters (fiber coating, extraction temperature, and time, sample volume and dilution conditions) were optimized. Also, different column sets (first × second dimensions) were also tested to obtain the best chromatographic resolution and peak capacity. Firstly, the GC×GC-ToFMS experimental parameters were implemented, and the reversed phase column set (polar 1D × nonpolar 2D), with the same diameters in primary and secondary columns, presented advantages compared to the conventional column set (nonpolar 1D × polar 2D) regarding the analytes´ separation. Secondly, the SPME conditions that promoted the highest extraction efficiency were selected: 2.0 mL of spirit (diluted at 10% v/v ethanol) were extract with poly(dimethylsiloxane)/divinylbenzene fiber, at 40˚C, using 10 min of pre-equilibrium followed by 30 min of extraction. An exploratory application was performed using a set of grape spirits, which allowed the detection of hundreds of volatiles, from which 120 were putatively identified. This study adds further insights unveiling the complex nature of the grape spirits chemical volatile data, through the identification of compounds not yet determined in these matrices, some of which are associated with aroma notes highly valued in fortified wines. In addition, these volatile patterns seem to be useful to the spirits distinction/typing.

Acknowledgments:

This work was funded under the AD4PurePort – New range of Port wines, based on an innovative method of selecting fortification spirits), project 39956 – POCI-01-0247-FEDER-039956, supported by the COMPETE 2020 Operational Programme under the PORTUGAL 2020. Thanks are also due to FCT/MEC for the financial support LAQV-REQUIMTE (UIDB/50006/2020) through national funds and co-financed by the FEDER, with a PT2020 Partnership Agreement.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Poster

Authors

Rocha Silvia1, Tavares Tiago1, Ribeiro Sónja1, Furtado Isabel2, Silva Ricardo2, Rogerson Frank S. S.2, Rudnitskaya Alisa3

1LAQV-REQUIMTE & Department of Chemistry, University of Aveiro
2Symington Family Estates
3CESAM & Department of Chemistry &, University of Aveiro

Contact the author

Keywords

Fortification spirit, Port wine, Volatile organic components, HS-SPME, GC×GC-ToFMS

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

PHOTOCHEMICAL DEGRADATION OF TRYPTOPHAN IN MODEL WINE: IMPACT OF HEAVY METALS AND OXYGEN ON 2-AMINOACETOPHENONE FORMATION

The wine industry worldwide faces more and more challenges due to climate change, such as increased dryness in some areas, water stress, sunburn and early harvesting during hot summer temperatures¹. One of the resulting problems for the wine quality might be a higher prevalence of the untypical aging off-flavor (ATA)². A substance, which Rapp and Versini made responsible for ATA, is the 2-aminoace-tophenone (2-AAP)³. 2-AAP in wine causes a naphthalene, wet towels, wet wool, acacia flower or just a soapy note⁴.

Soil fertility and confered vigour by rootstocks

The adaptation of rootstock to scion variety and soil determines largely the control of the vegetative growth for grapevine. Many experiments were performed in the vineyard to classify the rootstocks according to their soil adaptation and to their effect on vine vigour. So far there are no data describing the course of appearance of rootstock effects after plantation. Moreover the underlying mechanisms of conferred vigour remain largely unknown.

Consumer acceptance of sweet wines produced by stopping fermentation with octanoic and decanoic acids

The use of medium chain fatty acids for arresting the fermentation and producing sweet wines was investigated at industrial level. Doses of 10 mg/l of octanoic or decanoic acid and a combination of 5+5 mg/l octanoic and decanoic acid were used to produce sweet wines of tamaioasa romanească variety in volumes of 3000 l.

AROMA ASSESSMENT OF COMMERCIAL SFORZATO DI VALTELLINA WINES BYINSTRUMENTAL AND SENSORY METHODOLOGIES

Sforzato di Valtellina DOCG is a special dry red wine produced from partially dehydrated Nebbiolo wine-grapes growing in the Rhaetian Alps valley of Valtellina (Lombardy, Italy). Valtellina terraced vineyards are located at an altitude of 350–800 m according to ‘heroic’ viticulture on steep slopes. The harvested grape bunches are naturally dehydrated indoors, where a slow and continuous withering occurs (about 20% w/w of weight loss), until at least 1st December when the grapes reach the desired sugar content and can be processed following a normal winemaking with maceration.

Amyndeon‐naoussa: the two faces of Xinomavro

Xinomavro is the most important indigenous red wine variety grown in Northern Greece. It participates in the production of several PGI wines in Macedonia while from 100% Xinomavro the PDO “Amyndeon” and “Naoussa” are produced. The viticultural area of Amyndeon lies in a plateau of 550 ‐700 m of altitude, in a semi‐continental climate with mostly deep sandy loamy soils derived from limestone and marl bedrocks while in Naoussa, Xinomavro is grown in a Mediterranean climate on more heavy textured soils, sandy clay loam to clay, derived from ophiolithic, limestone and marl bedrocks, in an altitude which varies from 150 to 400 m. Different soil, climate and viticultural technique interactions, result in great variability with respect to morphological, ampelographical and physiological characters of Xinomavro as well as in the characteristics of the wines produced.