IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Unveiling the unknow aroma potential of Port wine fortification spirit taking advantage of the comprehensive two-dimensional gas chromatography

Unveiling the unknow aroma potential of Port wine fortification spirit taking advantage of the comprehensive two-dimensional gas chromatography

Abstract

Port wine is a fortified wine exclusively produced in the Douro Appellation (Portugal) under very specific conditions resulting from natural and human factors. Its intrinsic aroma characteristics are modulated upon a network of factors, such as the terroir, varieties and winemaking procedures that include a wide set of steps, namely the fortification with grape spirit (ca. 77% v/v ethanol). The fortification spirit comprises roughly one fifth of the total volume of this fortified wine, thus it is a potential contributor to the global quality of this beverage, including the aroma notes. Nonetheless, the information about the influence of the fortification spirit on the final aroma of Port wine, as well as the grape spirit volatile composition are extremely limited. Therefore, the main objective of this research is the optimization of an adequate methodology for the in-depth characterization of the fortification grape spirit volatile components, based on the use of advanced gas chromatography (GC×GC-ToFMS), combined with a solvent free solid phase microextraction technique (SPME). To fulfil this objective, the SPME experimental parameters (fiber coating, extraction temperature, and time, sample volume and dilution conditions) were optimized. Also, different column sets (first × second dimensions) were also tested to obtain the best chromatographic resolution and peak capacity. Firstly, the GC×GC-ToFMS experimental parameters were implemented, and the reversed phase column set (polar 1D × nonpolar 2D), with the same diameters in primary and secondary columns, presented advantages compared to the conventional column set (nonpolar 1D × polar 2D) regarding the analytes´ separation. Secondly, the SPME conditions that promoted the highest extraction efficiency were selected: 2.0 mL of spirit (diluted at 10% v/v ethanol) were extract with poly(dimethylsiloxane)/divinylbenzene fiber, at 40˚C, using 10 min of pre-equilibrium followed by 30 min of extraction. An exploratory application was performed using a set of grape spirits, which allowed the detection of hundreds of volatiles, from which 120 were putatively identified. This study adds further insights unveiling the complex nature of the grape spirits chemical volatile data, through the identification of compounds not yet determined in these matrices, some of which are associated with aroma notes highly valued in fortified wines. In addition, these volatile patterns seem to be useful to the spirits distinction/typing.

Acknowledgments:

This work was funded under the AD4PurePort – New range of Port wines, based on an innovative method of selecting fortification spirits), project 39956 – POCI-01-0247-FEDER-039956, supported by the COMPETE 2020 Operational Programme under the PORTUGAL 2020. Thanks are also due to FCT/MEC for the financial support LAQV-REQUIMTE (UIDB/50006/2020) through national funds and co-financed by the FEDER, with a PT2020 Partnership Agreement.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Poster

Authors

Rocha Silvia1, Tavares Tiago1, Ribeiro Sónja1, Furtado Isabel2, Silva Ricardo2, Rogerson Frank S. S.2, Rudnitskaya Alisa3

1LAQV-REQUIMTE & Department of Chemistry, University of Aveiro
2Symington Family Estates
3CESAM & Department of Chemistry &, University of Aveiro

Contact the author

Keywords

Fortification spirit, Port wine, Volatile organic components, HS-SPME, GC×GC-ToFMS

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Influence of deficit irrigation on grapevine cv. “Touriga Nacional” in Douro region: A metabolomic approach

Aim: This study aimed to evaluate whether irrigation of Touriga Nacional in Douro Demarcated Region (DDR) can partly mitigate the negative impacts of ongoing climate change on grapevine yield and quality and its impact on plant metabolism.

Late winter pruning induces a maturity delay under temperature-increased conditions in cv. Merlot from Chile

Chile is considered vulnerable to climate change; and these phenomena affect several mechanisms in the grape physiology and quality. The global temperature increase affects sugar contents, organic acids, and phenolic compounds in grapes, producing an imbalance maturity. In this sense, an alternative to reduce the impact is to perform pruning after vine budburst, known as “Late Pruning” (LP).

A worldwide perspective on viticultural zoning

Cet article répertorie les intérêts et problèmes du zonage viticole dans une perspective mondiale. Le zonage est un besoin pour chacun des vignobles mondiaux où il correspond à des applications, définitions et approches variées. Les objectifs du zonage changent de concert avec les besoins du marché mondial du vin, qui ne cesse de croître.

Teasing apart terroir: the influence of management style on native yeast communities within Oregon wineries and vineyards

Newer sequencing technologies have allowed for the addition of microbes to the story of terroir. The same environmental factors that influence the phenotypic expression of a crop also shape the composition of the microbial communities found on that crop. For fermented goods, such as wine, that microbial community ultimately influences the organoleptic properties of the final product that is delivered to customers. Recent studies have begun to study the biogeography of wine-associated microbes within different growing regions, finding that communities are distinct across landscapes. Despite this new knowledge, there are still many questions about what factors drive these differences. Our goal was to quantify differences in yeast communities due to management style between seven pairs of conventional and biodynamic vineyards (14 in total) throughout Oregon, USA. We wanted to answer the following questions: 1) are yeast communities distinct between biodynamic vineyards and conventional vineyards? 2) are these differences consistent across a large geographic region? 3) can differences in yeast communities be tied to differences in metabolite profiles of the bottled wine? To collect our data we took soil, bark, leaf, and grape samples from within each vineyard from five different vines of pinot noir. We also collected must and a 10º brix sample from each winery. Using these samples, we performed 18S amplicon sequencing to identify the yeast present. We then used metabolomics to characterize the organoleptic compounds present in the bottled wine from the blocks the year that we sampled. We are actively in the process of analysing our data from this study.

Tannin potential and molecular toasting in cooperage: a tool to modulate fruity expression of red wine

AIM: Oak wood play traditionally a huge role in making fine red wines. During wine maturation, barrel yields some of its constituents to the wine and leads to the improvement of its quality, contributing to richness and complexity [1].