IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Highlighting the several chemical situations of Dimethyl sulfide in wine

Highlighting the several chemical situations of Dimethyl sulfide in wine

Abstract

Dimethyl sulfide (DMS) is a compound that accumulate in wine for the early years of ageing 1. During this stage, which is often carried out in the bottle, the environmental conditions are conducive to the release of DMS from its precursors, already present in grapes2. DMS has long been associated with unpleasant odours of cabbage or green olives but technological advances in analytical methods have made it possible to quantify this compound in smaller quantities in wines, allowing scientists to consider it as an aromatically interesting molecule. Recently, DMS has been identified as a central component of ageing bouquets for participating to their complexity and typicity3,4. Indeed, it contributes to the “truffle” and “undergrowth” odours of wines and its presence intensifies the fruity aromas and more particularly of the blackcurrant notes5. Also during the tasting, DMS acts as an enhancer and an inhibitor of aromatic notes successively and alternatively6. On the other hand, recent laboratory tests have shown that a wine spiked with a known amount of DMS will not have the same smell as a wine naturally rich in the same amount of DMS. Thus, the hypothesis of the existence of weak bonds between DMS and some components of wine matrix was posed.

Several components whose combined effect may be possible was chosen for explore hypothesis. Model wine solutions were made with additions of the different target compounds and DMS. Free DMS was determined by SHS-FPD at different days according to established kinetics. Then, the sorption mode was characterized as well as the sensory impact of DMS in different matrices. 

Experiments showed that in the model solutions containing grapes tannins, the free DMS decreased over the days compared to the control without tannins where the amounts of DMS remained the same from 0 to 15 days. Differences in the decrease of free DMS in the headspace of the samples were observed and measured depending on the tannin fractions tested and the concentration added to the model solution. Then, the sorption mode employed between DMS and tannins studied would be a cooperation sorption. The characterisation of DMS in water, wine and according to its mode of service was carried out which made it possible to highlight the multiple odours of this compound and its essential contribution, whatever its form in the wine, to the aromatic characters of this one as of the opening of the bottle.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Laboyrie Justine1, Jourdes Michael1 and Marchand Stéphanie1

1University of Bordeaux, INRAE, Bordeaux INP, UR OENOLOGIE, EA 4577, USC 1366, 210 Chemin de Leysotte – CS50008, 33882 Villenave d’Ornon Cedex, France

Contact the author

Keywords

Wine ageing, Dimethyl sulfide, sorption, tanins, bounded form aroma

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Sugar accumulation disorder Berry Shrivel – from current knowledge towards novel hypothesis

In contrast to fruit and grape berry ripening, the biological processes causing ripening disorders are often much less understood, although shriveling disorders of fruits are manifold and contribute to yield losses and reduced fruit quality worldwide. Shrinking berries are a common feature for all shriveling disorders in grapevine although their timing of appearance during the berry ripening process and their underlying induction processes distinct them from each other. The sugar accumulation disorder Berry Shrivel (BS) is characterized by a suppression of sugar accumulation short after veraison resulting in berries low in sugar content and anthocyanins in berry skins, while the organic acid content is similar. Recent studies analyzed the biochemical, morphological and molecular processes affected in BS berries and linked early changes to the period of ripening onset [1,2].

The problem of the increasing pH in sparkling wines caused by climate change: use of cationic exchange to correct it

In recent years, the increase in temperature and the changes in rainfall distribution caused by climate change are affecting vine and grape physiology and are consequently impacting wine composition and quality (Schultz, 2000; Jones et al., 2005).

Exploring the effect of ripening rates on the composition of aroma and phenolic compounds in Cabernet-Sauvignon wines

The study of cultural practices to delay ripening and the characterization of their effect on wine composition is important in the mitigation of accelerated ripening caused by higher temperatures

Hydraulic redistribution and water movement mechanisms in grapevines

Plants have been shown to redistribute water between root sections and soil layers along a gradient of decreasing water availability. One benefit of this hydraulic redistribution is that water can be transported from roots in wet soil to others in dry soil, delaying the onset of water stress and increasing root longevity in dry environments. Grapevines are thought to redistribute water laterally across the trunk from wet to dry portions of the root system. However, it is unknown whether the phloem contributes to such water redistribution.

Vinhos de talha: to pitch or not to pitch

In Alentejo, south of Portugal there is a traditional way of fermenting wines in clay vessels, known as “Vinhos de Talha”. Clay vessels were traditionally impermeabilized using pine pitch, creating a barrier between the fermenting must and the clay. Due to this unusual production technology that uses of clay vessels, instead of inox or wood vessels, “Vinhos de Talha” present unique characteristics increasingly appreciated by national and international consumers when compared with wine obtained by the said traditional methods of winemaking. Although the positive consumers feedback, there is little literature about the physical-chemical characteristics of these wines (Martins et al, 2018; Cabrita et al, 2018). This work aims to characterize the volatile composition of white wines produced in clay vessels with different coatings and to contribute to the knowledge and preservation of these wines that are a unique cultural heritage. Wine samples were produced during 2019 vintage from white grapes, using the traditional technology associated to these wines.