IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Highlighting the several chemical situations of Dimethyl sulfide in wine

Highlighting the several chemical situations of Dimethyl sulfide in wine

Abstract

Dimethyl sulfide (DMS) is a compound that accumulate in wine for the early years of ageing 1. During this stage, which is often carried out in the bottle, the environmental conditions are conducive to the release of DMS from its precursors, already present in grapes2. DMS has long been associated with unpleasant odours of cabbage or green olives but technological advances in analytical methods have made it possible to quantify this compound in smaller quantities in wines, allowing scientists to consider it as an aromatically interesting molecule. Recently, DMS has been identified as a central component of ageing bouquets for participating to their complexity and typicity3,4. Indeed, it contributes to the “truffle” and “undergrowth” odours of wines and its presence intensifies the fruity aromas and more particularly of the blackcurrant notes5. Also during the tasting, DMS acts as an enhancer and an inhibitor of aromatic notes successively and alternatively6. On the other hand, recent laboratory tests have shown that a wine spiked with a known amount of DMS will not have the same smell as a wine naturally rich in the same amount of DMS. Thus, the hypothesis of the existence of weak bonds between DMS and some components of wine matrix was posed.

Several components whose combined effect may be possible was chosen for explore hypothesis. Model wine solutions were made with additions of the different target compounds and DMS. Free DMS was determined by SHS-FPD at different days according to established kinetics. Then, the sorption mode was characterized as well as the sensory impact of DMS in different matrices. 

Experiments showed that in the model solutions containing grapes tannins, the free DMS decreased over the days compared to the control without tannins where the amounts of DMS remained the same from 0 to 15 days. Differences in the decrease of free DMS in the headspace of the samples were observed and measured depending on the tannin fractions tested and the concentration added to the model solution. Then, the sorption mode employed between DMS and tannins studied would be a cooperation sorption. The characterisation of DMS in water, wine and according to its mode of service was carried out which made it possible to highlight the multiple odours of this compound and its essential contribution, whatever its form in the wine, to the aromatic characters of this one as of the opening of the bottle.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Laboyrie Justine1, Jourdes Michael1 and Marchand Stéphanie1

1University of Bordeaux, INRAE, Bordeaux INP, UR OENOLOGIE, EA 4577, USC 1366, 210 Chemin de Leysotte – CS50008, 33882 Villenave d’Ornon Cedex, France

Contact the author

Keywords

Wine ageing, Dimethyl sulfide, sorption, tanins, bounded form aroma

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Can varietal ‘apricot’ aroma of Viognier wine be controlled with clonal selection and harvest timing?

Recent wine-like reconstitution sensory studies confirmed that several monoterpenes were the key aroma compounds in the perception of an ‘apricot’ aroma attribute in Viognier wine.

New methods and technologies to describe the environment in terroir studies

The concept of terroir in viticulture deals with the influence of environmental factors on vine behaviour and grape ripening. Recent advances in technology, in particular computer technology, allow a more in-depth study of the environment. Geomorphology can be studied with digital Elevation Models (DEM). Soils can be surveyed with geophysics.

Definition of functional indicators of the vine to characterize wine terroirs

La caractérisation des terroirs viticoles est traditionnellement basée sur des descripteurs de la géologie et de la pédologie des différents milieux rencontrés, couplées à des données climatiques

Amyndeon‐naoussa: the two faces of Xinomavro

Xinomavro is the most important indigenous red wine variety grown in Northern Greece. It participates in the production of several PGI wines in Macedonia while from 100% Xinomavro the PDO “Amyndeon” and “Naoussa” are produced. The viticultural area of Amyndeon lies in a plateau of 550 ‐700 m of altitude, in a semi‐continental climate with mostly deep sandy loamy soils derived from limestone and marl bedrocks while in Naoussa, Xinomavro is grown in a Mediterranean climate on more heavy textured soils, sandy clay loam to clay, derived from ophiolithic, limestone and marl bedrocks, in an altitude which varies from 150 to 400 m. Different soil, climate and viticultural technique interactions, result in great variability with respect to morphological, ampelographical and physiological characters of Xinomavro as well as in the characteristics of the wines produced. 

Genotypic differences in early-stage root architectural traits and consequences for water uptake in three grapevine rootstocks differing in drought tolerance

Root architecture (RSA), the spatial-temporal arrangement of a root system in soil, is essential for edaphic resources acquisition by the plant, and thus contributes largely to its productivity and adaptation to environmental stresses, particularly soil water deficit. In grafted grapevine, while the degree of drought tolerance induced by the rootstock has been well documented in the vineyard, information about the underlying physiological processes, particularly at the root level, is scarce, due to the inherent difficulties in observing large root systems in situ. The aims of this study were (i) to determine the phenotypic differences in traits related to root distribution and morphology along the substrate profile in different Vitis rootstocks during early growth, (ii) to assess the plasticity of these traits to soil water deficit and (iii) to quantify their relationships with plant water uptake.