IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Highlighting the several chemical situations of Dimethyl sulfide in wine

Highlighting the several chemical situations of Dimethyl sulfide in wine

Abstract

Dimethyl sulfide (DMS) is a compound that accumulate in wine for the early years of ageing 1. During this stage, which is often carried out in the bottle, the environmental conditions are conducive to the release of DMS from its precursors, already present in grapes2. DMS has long been associated with unpleasant odours of cabbage or green olives but technological advances in analytical methods have made it possible to quantify this compound in smaller quantities in wines, allowing scientists to consider it as an aromatically interesting molecule. Recently, DMS has been identified as a central component of ageing bouquets for participating to their complexity and typicity3,4. Indeed, it contributes to the “truffle” and “undergrowth” odours of wines and its presence intensifies the fruity aromas and more particularly of the blackcurrant notes5. Also during the tasting, DMS acts as an enhancer and an inhibitor of aromatic notes successively and alternatively6. On the other hand, recent laboratory tests have shown that a wine spiked with a known amount of DMS will not have the same smell as a wine naturally rich in the same amount of DMS. Thus, the hypothesis of the existence of weak bonds between DMS and some components of wine matrix was posed.

Several components whose combined effect may be possible was chosen for explore hypothesis. Model wine solutions were made with additions of the different target compounds and DMS. Free DMS was determined by SHS-FPD at different days according to established kinetics. Then, the sorption mode was characterized as well as the sensory impact of DMS in different matrices. 

Experiments showed that in the model solutions containing grapes tannins, the free DMS decreased over the days compared to the control without tannins where the amounts of DMS remained the same from 0 to 15 days. Differences in the decrease of free DMS in the headspace of the samples were observed and measured depending on the tannin fractions tested and the concentration added to the model solution. Then, the sorption mode employed between DMS and tannins studied would be a cooperation sorption. The characterisation of DMS in water, wine and according to its mode of service was carried out which made it possible to highlight the multiple odours of this compound and its essential contribution, whatever its form in the wine, to the aromatic characters of this one as of the opening of the bottle.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Laboyrie Justine1, Jourdes Michael1 and Marchand Stéphanie1

1University of Bordeaux, INRAE, Bordeaux INP, UR OENOLOGIE, EA 4577, USC 1366, 210 Chemin de Leysotte – CS50008, 33882 Villenave d’Ornon Cedex, France

Contact the author

Keywords

Wine ageing, Dimethyl sulfide, sorption, tanins, bounded form aroma

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

A DNA-free editing approach to help viticulture sustainability: dual editing of DMR6-1 and DMR6-2 enhances resistance to downy mildew 

The sustainability of viticulture hinges on maintaining quality and yield while reducing pesticide use. Promising strides in this direction involve the development of clones with enhanced disease tolerance, particularly through the knockout of plant susceptibility genes. Knocking out of Downy Mildew Resistant 6 (DMR6) led to increased levels of endogenous salicylic acid (SA), a regulator of immunity, resulting in enhanced tolerance to Downy Mildew (DM) and other diseases in various crops.

Vitamins in musts : an unexplored field

Vitamins are major compounds, involved in several prime yeast metabolic pathways. Yet, their significance in oenology has remained mostly unexplored for several decades and our current knowledge on the matter still remaining obscure to this day. While the vitaminic contents of grape musts have been approached in these ancient investigation

Cluster trait prediction using hyperspectral signatures in a population of 221 Riesling clones

Cluster architecture in grapevine plays a critical role in influencing bunch microclimate, thus quality traits, including sugar content, phenolic composition, and disease susceptibility.

An overview of the impact of clone, environmental factors and viticultural techniques on rotundone concentration in red wines

Rotundone is the main aroma compound responsible for peppery notes in red wine. This positive and very potent molecule has an odor threshold of 8 ng/L in water and 16 ng/L in red wine. It has been detected in several grape varieties with some of the highest concentrations recorded in Syrah, Duras, Tardif and Noiret, an interspecific hybrid grown in the North-East of the USA. If several winemaking practices have been identified to lower rotundone in wine, up to date, no enological solution has proved its efficiency to maximize it. This means that efforts to produce high rotundone wines must be undertaken in vineyards. This work provides practical ways that can be used by winegrowers to modulate rotundone levels in their wines.

Study of the aromatic oxidation markers of Tempranillo long aged wines

The aromatic quality of wines after a long aging period in bottle is one of key points for oenologists. The objective of this work is to determine the main representative aromatic compounds found in long aged wines from D.O.Ca. Rioja. This study was made by 32 wines from 1971 to 2010 vintages. Sotolon, acetaldehyde, phenylacetaldehyde, 1,1,6-trimethyl-1,2-dihydronaptalene (TDN), β-damascenone, Y-decalactone and Y-dodecalactone were determined as the most important oxidation markers by GC-MS analysis. Moreover, sensory analysis using triangular tests were performed from wines with and without the addition of the mentioned compounds. Four different concentrations of each odorant were added, as individual compounds and as mixtures. The additions were ranged from values close to the reference odour thresholds up to high level concentrations. The most identified aroma was sotolon, which is commonly associated to curry and coffee liqueur aromatic notes. Other oxidative compounds were easily detected by panellists, such as Y-decalactone (peach compote), Y-dodecalactone (ripe fruit). The mixtures of the odorants were most easily detected than the individual compounds. It should be noted that acetaldehyde and phenylacetaldehyde were rarely perceived and distinguished.