IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Highlighting the several chemical situations of Dimethyl sulfide in wine

Highlighting the several chemical situations of Dimethyl sulfide in wine

Abstract

Dimethyl sulfide (DMS) is a compound that accumulate in wine for the early years of ageing 1. During this stage, which is often carried out in the bottle, the environmental conditions are conducive to the release of DMS from its precursors, already present in grapes2. DMS has long been associated with unpleasant odours of cabbage or green olives but technological advances in analytical methods have made it possible to quantify this compound in smaller quantities in wines, allowing scientists to consider it as an aromatically interesting molecule. Recently, DMS has been identified as a central component of ageing bouquets for participating to their complexity and typicity3,4. Indeed, it contributes to the “truffle” and “undergrowth” odours of wines and its presence intensifies the fruity aromas and more particularly of the blackcurrant notes5. Also during the tasting, DMS acts as an enhancer and an inhibitor of aromatic notes successively and alternatively6. On the other hand, recent laboratory tests have shown that a wine spiked with a known amount of DMS will not have the same smell as a wine naturally rich in the same amount of DMS. Thus, the hypothesis of the existence of weak bonds between DMS and some components of wine matrix was posed.

Several components whose combined effect may be possible was chosen for explore hypothesis. Model wine solutions were made with additions of the different target compounds and DMS. Free DMS was determined by SHS-FPD at different days according to established kinetics. Then, the sorption mode was characterized as well as the sensory impact of DMS in different matrices. 

Experiments showed that in the model solutions containing grapes tannins, the free DMS decreased over the days compared to the control without tannins where the amounts of DMS remained the same from 0 to 15 days. Differences in the decrease of free DMS in the headspace of the samples were observed and measured depending on the tannin fractions tested and the concentration added to the model solution. Then, the sorption mode employed between DMS and tannins studied would be a cooperation sorption. The characterisation of DMS in water, wine and according to its mode of service was carried out which made it possible to highlight the multiple odours of this compound and its essential contribution, whatever its form in the wine, to the aromatic characters of this one as of the opening of the bottle.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Laboyrie Justine1, Jourdes Michael1 and Marchand Stéphanie1

1University of Bordeaux, INRAE, Bordeaux INP, UR OENOLOGIE, EA 4577, USC 1366, 210 Chemin de Leysotte – CS50008, 33882 Villenave d’Ornon Cedex, France

Contact the author

Keywords

Wine ageing, Dimethyl sulfide, sorption, tanins, bounded form aroma

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

DNA-Free genome editing confers disease resistance in grapevine

Grapevine (Vitis Vinifera L.), one of the most important cultivated fruit crops, is facing significant challenges due to climate change. Specifically, increasing temperatures negatively impact the physiological traits and disrupt plant phenology. Additionally, increased virulence in pathogen attacks and pests leads to significant yield loss, requiring widespread application of plant protection products. Traditional agronomic practices offer only partial mitigation, requiring the development of precise and effective intervention strategies. The economic worth of viticulture has prompted continuous efforts in grapevine genetic improvement programs, traditionally involving conventional breeding and clonal selection that, however, are complex and time-consuming approaches.

Towards the definition of a terroir of grape dehydration for the production of ‘Passito’ wines in Valpolicella (Italy)

Aim: The aim of this study was to investigate the relationship between the molecular response of grapes during postharvest dehydration and the specific environment of two naturally ventilated rooms (called ‘fruttai’), located in two different sites in Valpolicella

Determination of selected phenolics, carotenoids and norisoprenoids in Riesling grapes after treatment against sunburn damage

Riesling represents the most widely cultivated grape variety in Germany and is therefore of particular economic interest. During recent years an increase in the petrol-note as well as in undesirable bitter and adstringent notes has been reported. These changes are most likely linked to increasing temperature and sunlight exposure of grapes due to climate changes.
The “petrol note” is caused by the formation of the C13-norisoprenoid 1,1,6-trimethyl-1,2-dihydronaphthalin (TDN), which originates from acid-labile precursors formed by the carotenoid degradation in the grape.

Comparison of the principal production methods for alcohol-free wine based on analytical parameters

Production, demand, and brand awareness of dealcoholized wine (<0.5% v/v) is steadily increasing worldwide. However, there have been few studies to date investigating and comparing the different physical processes for dealcoholizing wine.

Elucidating vineyard site contributions to key sensory molecules: Identification of correlations between elemental composition and volatile aroma profile of site-specific Pinot noir wines

The reproducibility of elemental profile in wines produced across multiple vintages has been previously reported using grapes from a single scion clone of Vitis vinifera L. cv. Pinot noir. The grapevines were grown on fourteen different vineyard sites, from Oregon to southern California in the U.S.A., which span distances from approximately hundreds of meters to 1450 km, while elevations range from near sea level to nearly 500 m. In addition, sensorial (i.e. aroma, taste, and mouthfeel) and chemical (i.e. polyphenolic and volatile) differences across the different vineyard sites have also been observed among these wines at two aging time points. While strong evidence exists to support that grapes grown in different regions can produce wines with unique chemical and sensorial profiles, even when a single clone is used, the understanding of growing site characteristics that result in this reproducible differentiation continues to emerge. One hypothesis is that the elemental profile that a vineyard site imparts to the grape berries and the resulting wine is an important contributor to this differentiation in chemistry and sensory of wines. For example, various classes of enzymes that catalyze the formation of key aroma compounds or their precursors require specific metals. In this work, we begin to report correlations between elemental and volatile aroma profiles of site-specific Pinot noir wines, made under standardized winemaking conditions, that have been previously shown to be distinguished separately by these chemical analyses.