IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Transition metals and light-dependent reactions: application of a response surface methodology approach

Transition metals and light-dependent reactions: application of a response surface methodology approach

Abstract

Light-induced reactions can be responsible for detrimental changes of white and rosé wines. This is associated to the photo-degradation of riboflavin (RF) and of methionine (Met) causing the appearance of light-struck taste (LST). The fault is associated to the formation of volatile sulfur compounds (VSCs), namely methanethiol (MeSH) and dimethyl disulfide (DMDS), leading to cooked cabbage, onion and garlic odours-like [1]. Aside these pathways, other oxidative reactions can occur involving iron and copper that can generate quinones. Moreover, the ability of copper in binding the compounds containing a free thiol group is well known. 
This study aimed to evaluate for the first time the combined effect of iron, copper, and oxygen on LST formation in model wine.
A Surface Response Methodology approach was used considering 3 variables, as iron, copper and oxygen. Based on the experimental design, 15 runs (light-exposed and kept in the dark) were performed in model wine. Furthermore, to better understand the influence of phenolics, the same experimental design was applied in the presence of catechin and caffeic acid, used as model phenols. RF, Met, VSCs, and sensory were determined.
No RF was found in any light-exposed sample analysed. The major decrease of Met was revealed in model solution in which MeSH and DMDS were the highest. The presence of phenolics limited the degradation of Met and, consequently, the formation of MeSH and DMDS. In particular, in most of the runs where caffeic acid was added, VSCs were lower than in the runs in model wine and in the presence of catechin. The presence of iron (10 mg/L and 5 mg/L with oxygen 3 mg/L) led to a higher content of mercaptans in model wine as well as in the presence of catechin and caffeic acid. Our findings suggest that besides RF and Met, the susceptibility of a wine in developing LST appeared to be related to the presence of transition metals as well as to the different phenols that would ordinarily be present in wine. 
This study represents a further step for the deeper comprehension of the photo-induced reactions allowing to pursue the LST prevention in white wine.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Fracassetti Daniela1, Jeffery David2, Ballabio Davide3 and Tirelli Antonio1

1Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy
2Department of Wine Science and Waite Research Institute, The University of Adelaide
3Department of Earth and Environmental Sciences, University of Milano-Bicocca

Contact the author

Keywords

riboflavin, methionine, catechin, caffeic acid, volatile sulfur compounds

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

An operational model for capturing grape ripening dynamics to support harvest decisions

Grape ripening is a critical phenophase during which many metabolites driving wine quality are accumulated in berries. Major changes in berry composition include a rapid increase in sugar and a decrease in malic acid content and concentration. Its duration is highly variable depending on grapevine variety, climatic parameters, soil type and management practices.

Methodological advances in relating deep root activity to whole vine physiology

Full understanding of grapevine responses to variable soil resources requires
assessing the grapevine root system. Grapevine root systems are expansive and examining deep roots (i.e., >40 cm)
is particularly important in conditions where grapevines increase reliance on deep soil resources, such as drought
or plant competition. Traditional methods of assessing roots rely on morphological traits associated specific
functions (e.g., root color, diameter, length), while recent methodological advances allow for estimating root
function more directly (e.g., omics). Yet, the potential of applying refined methods remains underexplored for roots
at deep depths.

The moment of preharvest elicitor application influence its final effect on winegrapes quality

Phenolic compounds are secondary metabolites of grapes. Plants produce a wide variety of this type of metabolites through diverse biosynthesis pathways and their production is sometimes a response to external stimuli, either environmental or biotic stresses. Some of them may act as chemical defenses against pathogens or herbivores and their synthesis is increased when the attack exists. However, it is remarkable that the synthesis of these interesting compounds can be activated even when the stimulus is not present, with the use of elicitors. These are substances that when applied exogenously trigger the biosynthetic pathways conducting to the synthesis of these defense compounds.

Effects of post-veraison irrigation dose on Cabernet-Sauvignon vines in a dry and warm season in Valencia, Spain

In the old-world viticulture, there is a common but most often not scientifically proved consideration that supplemental irrigation should detrimentally affect berry and wine composition. In the semi-arid

Life cycle assessment (LCA) to move towards more environmentally friendly winegrowing

As six on the nine planetary boundaries have already been crossed, putting our safe life on Earth at risk (Rockström et al., 2024) and agriculture is significantly responsible for it (Campbell et al., 2017), viticulture, faces the challenge of reducing its environmental impacts through fundamental changes to its practices.