IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Transition metals and light-dependent reactions: application of a response surface methodology approach

Transition metals and light-dependent reactions: application of a response surface methodology approach

Abstract

Light-induced reactions can be responsible for detrimental changes of white and rosé wines. This is associated to the photo-degradation of riboflavin (RF) and of methionine (Met) causing the appearance of light-struck taste (LST). The fault is associated to the formation of volatile sulfur compounds (VSCs), namely methanethiol (MeSH) and dimethyl disulfide (DMDS), leading to cooked cabbage, onion and garlic odours-like [1]. Aside these pathways, other oxidative reactions can occur involving iron and copper that can generate quinones. Moreover, the ability of copper in binding the compounds containing a free thiol group is well known. 
This study aimed to evaluate for the first time the combined effect of iron, copper, and oxygen on LST formation in model wine.
A Surface Response Methodology approach was used considering 3 variables, as iron, copper and oxygen. Based on the experimental design, 15 runs (light-exposed and kept in the dark) were performed in model wine. Furthermore, to better understand the influence of phenolics, the same experimental design was applied in the presence of catechin and caffeic acid, used as model phenols. RF, Met, VSCs, and sensory were determined.
No RF was found in any light-exposed sample analysed. The major decrease of Met was revealed in model solution in which MeSH and DMDS were the highest. The presence of phenolics limited the degradation of Met and, consequently, the formation of MeSH and DMDS. In particular, in most of the runs where caffeic acid was added, VSCs were lower than in the runs in model wine and in the presence of catechin. The presence of iron (10 mg/L and 5 mg/L with oxygen 3 mg/L) led to a higher content of mercaptans in model wine as well as in the presence of catechin and caffeic acid. Our findings suggest that besides RF and Met, the susceptibility of a wine in developing LST appeared to be related to the presence of transition metals as well as to the different phenols that would ordinarily be present in wine. 
This study represents a further step for the deeper comprehension of the photo-induced reactions allowing to pursue the LST prevention in white wine.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Fracassetti Daniela1, Jeffery David2, Ballabio Davide3 and Tirelli Antonio1

1Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy
2Department of Wine Science and Waite Research Institute, The University of Adelaide
3Department of Earth and Environmental Sciences, University of Milano-Bicocca

Contact the author

Keywords

riboflavin, methionine, catechin, caffeic acid, volatile sulfur compounds

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Influence of mixed fermentations with Starmerella bacillaris and Saccharomyces cerevisiae on malolactic fermentation by Lactobacillus plantarum and Oenococcus oeni in wines

Over the last years, the potential use of non-Saccharomyces yeasts to modulate the production of target metabolites of oenological interest has been well recognized. Among non-Saccharomyces yeasts, Starmerella bacillaris (synonym Candida zemplinina) is considered one of the most promising species to satisfy modern market and consumers preferences due to its peculiar characteristic (enhance glycerol and total acidity contents and reduce ethanol production). Mixed fermentations using Starm. bacillaris and Saccharomyces cerevisiae starter cultures represent a way to modulate metabolites of enological interest, taking advantage of the phenotypic specificities of the former and the ability of the latter to complete the alcoholic fermentation. However, the consumption of nutrients by these species and their produced metabolites may inhibit or stimulate the growth (and malolactic activity) of lactic acid bacteria (LAB).

Leaf necrosis induced by the insecticide carbaryl in Vitis rupestris ‘B38’

Carbaryl is an acetylcholine esterase inhibitor-type insecticide used for pest control on grapevine. We repeatedly observed the occurrence of interveinal leaf necrosis following carbaryl spray application in a Vitis rupestris x Vitis riparia F1 hybrid progeny vineyard. Spray applications induced necrosis in this progeny under both Missouri and New York field conditions an approximate one-to-one sensitive-to-insensitive segregation ratio and with 42% concordance. Results of subsequent in vitro experiments established causality between carbaryl treatment and leaf necrosis and confirmed the pattern of segregation observed in the field. We consistently map this phenotype to a major QTL on chromosome 16 of the female parent V. rupestris ‘B38’ regardless of whether we used field or in vitro-generated phenotype data.

BIOPROTECTION BY ADDING NON-SACCHAROMYCES YEASTS : ADVANCED RESEARCH ON THIS PROMISING ALTERNATIVE TO SO₂

Sulphur dioxide has been used for many years for its antimicrobial, antioxidant and antioxydasic properties in winemaking but nowadays, it is a source of controversy. Indeed, consumers are more attentive to the naturalness of their foods and beverages and the legislation is changing to reduce the total SO₂ levels allowed in wines. To limit and replace the doses of sulphur dioxide applied, winemakers can now use bioprotection consisting in live yeast addition as alternative,seems to be promising. This process, lightly used in from the food industry, allows to colonize the environment and limit the development or even eliminate undesirable microorganisms without altering the sensory properties of the product.

A GIS Analysis of New Zealand Terroir

This paper summarises a national survey of the geological setting of vineyards in New Zealand. We also provide an overview of climate, slope, aspect and varietals planted in New Zealand vineyards as a whole and for some individual regions.

Evaluation of sap flow and trunk diameter measurements in grapevines using time series decomposition

Grapevines are very sensitive to weather conditions. Excessively hot and dry periods trigger the activation of survival mechanisms, such as reduction of crop transpiration and the redistribution of water. Monitoring these mechanisms is, therefore, essential to better understand the grapevine water dynamics and maximize water-use efficiency.