IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Transition metals and light-dependent reactions: application of a response surface methodology approach

Transition metals and light-dependent reactions: application of a response surface methodology approach

Abstract

Light-induced reactions can be responsible for detrimental changes of white and rosé wines. This is associated to the photo-degradation of riboflavin (RF) and of methionine (Met) causing the appearance of light-struck taste (LST). The fault is associated to the formation of volatile sulfur compounds (VSCs), namely methanethiol (MeSH) and dimethyl disulfide (DMDS), leading to cooked cabbage, onion and garlic odours-like [1]. Aside these pathways, other oxidative reactions can occur involving iron and copper that can generate quinones. Moreover, the ability of copper in binding the compounds containing a free thiol group is well known. 
This study aimed to evaluate for the first time the combined effect of iron, copper, and oxygen on LST formation in model wine.
A Surface Response Methodology approach was used considering 3 variables, as iron, copper and oxygen. Based on the experimental design, 15 runs (light-exposed and kept in the dark) were performed in model wine. Furthermore, to better understand the influence of phenolics, the same experimental design was applied in the presence of catechin and caffeic acid, used as model phenols. RF, Met, VSCs, and sensory were determined.
No RF was found in any light-exposed sample analysed. The major decrease of Met was revealed in model solution in which MeSH and DMDS were the highest. The presence of phenolics limited the degradation of Met and, consequently, the formation of MeSH and DMDS. In particular, in most of the runs where caffeic acid was added, VSCs were lower than in the runs in model wine and in the presence of catechin. The presence of iron (10 mg/L and 5 mg/L with oxygen 3 mg/L) led to a higher content of mercaptans in model wine as well as in the presence of catechin and caffeic acid. Our findings suggest that besides RF and Met, the susceptibility of a wine in developing LST appeared to be related to the presence of transition metals as well as to the different phenols that would ordinarily be present in wine. 
This study represents a further step for the deeper comprehension of the photo-induced reactions allowing to pursue the LST prevention in white wine.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Fracassetti Daniela1, Jeffery David2, Ballabio Davide3 and Tirelli Antonio1

1Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy
2Department of Wine Science and Waite Research Institute, The University of Adelaide
3Department of Earth and Environmental Sciences, University of Milano-Bicocca

Contact the author

Keywords

riboflavin, methionine, catechin, caffeic acid, volatile sulfur compounds

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Impact of strain and inoculation time on yeasts interactions: mass spectrometry-based study.

Under oenological conditions, when yeasts grow simultaneously during alcoholic fermentation, they often do not coexist passively, and in most cases, physiological and metabolic interactions are established between them. They interact by producing unpredictable compounds and fermentation products that can affect the chemical composition of the wine and therefore alter its aromatic and sensory

New biotechnological approaches for a comprehensive characterization of AGL11 and its molecular mechanism underlying seedlessness trait in table grape

In table grapes seedlessness is a crucial breeding target, mainly results from stenospermocarpy, linked to the Thompson Seedless variety. Several studies investigated the genetic control of seedlessness identifying AGL11, a MADS-box transcription factor, as a crucial gene.
We performed a deep investigation of the whole AGL11 gene sequence in a collection of grapevine varieties revealing three different promoter-CDS combinations. By investigating the expression of the three AGL11 alleles and evaluating their ability to activate the promoter region, we show that AGL11 regulates its transcription in a specific promoter-CDS manner. By a multi-AGL11 co-expression analysis we identified a methyl jasmonate esterase, an indole-3-acetate beta-glucosyltransferase, and an isoflavone reductase as top AGL11 candidate targets. In vivo experiments further confirmed AGL11 role in regulating these genes, demonstrating its significant influence in seed development and thus in seedlessness trait.

The sea breeze: a significant climatic factor for viticultural zoning in coastal wine growing areas

La brise de mer est un facteur climatique important pour le zonage viticole des régions viticoles côtières car l’accélération du vent qui lui est associée l’après midi ainsi que l’augmentation de l’humidité relative et la réduction de la température concomitantes sont significatives pour le fonctionnement de la vigne et, par conséquent, la qualité du raisin et du vin

New acylated flavonols identified in the grape skin of Vitis vinifera cv. Tannat and their wines

Flavonols are a class of flavonoid compounds derived from plant secondary metabolism. There they play different roles like antioxidants, internal regulators and UV screenings. In red wines, flavonols have increasingly received consideration by part of scientific and winemakers according their properties began to arise known. Among these stand out wine colour stabilization and their value as bioactive compounds. In this work the complete series of the acetylated and p-coumaroylated derivatives of the 3-O-glycosides of methoxylated flavonols, namely isorhamnetin, laricitrin and syringetin, have been identified in grapes and their respective wines from Vitis vinifera cv. Tannat.

Enhancing plant defense: carbon dots for efficient spray-induced gene silencing 

Ectopic RNA application for plant defense faces challenges in tree crops, including size, diffusion, and stability of active compounds such as ribonucleoproteins and nucleic acids. While existing strategies involve expressing dsRNA in transgenic plants targeting pathogens, our research strives to develop a transient RNAi system based on Spray-Induced Gene Silencing (SIGS). This approach aims to circumvent legal barriers and public concerns associated with genetically modified organisms (GMOs). Our strategy integrates SIGS with branched polyethyleneimine-functionalized Carbon Dots (bPEI-CDs) as nanocarriers, effectively addressing unique delivery challenges in plant defense as RNA stability and uptake enhancement