IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Effect of the addition of peptidic hydrolysates from grape pomace by-products to red wines in warm regions

Effect of the addition of peptidic hydrolysates from grape pomace by-products to red wines in warm regions

Abstract

High temperatures typical of warm climates cause the colour of red wines to become increasingly unstable over time. This is due to the fact that phenolic and technological maturities do not coincide at the time of harvest in these climates, in contrast to colder viniculture zones. As a consequence, the colour of wines decreases after months of storage within bottles or barrels due to copigmentation processes being hampered by a shortage of pigments and copigments.
This study has focused on improving the colour stability of red wines elaborated in warm climates by adding an enzymatic hydrolysate of defatted grape seed meal six months after fermentation of Syrah grapes cultivated in “Condado de Huelva” Designation of Origin (Spain). This defatted meal comes from the industrial processing of grape pomace, contributing to the reuse of this residue as a by-product. Two different types of defatted grape seed meal were used (from red and white grapes), which protein fraction was extracted and further submitted to enzymatic hydrolysis with Alcalase under alkaline conditions. Hydrolysis was carried out at two different times, 1 and 4 h, to obtain peptides of high and low molecular weight, which were added to the wine at two different concentrations: 1 g/L and 3 g/L, in triplicate. Differential tristimulus colorimetry (L*, C*ab, hab, ΔE*ab), copigmentation, molecular weight distribution, and polyphenolic content (HPLC-DAD) were studied in wines every month along six months of time evolution.
The addition of 3 g/L peptides from 1-hour hydrolysis showed a colour stabilization effect on red wines regardless of the grape variety, in the light of the higher values of chroma (C*ab) and copigmentation, even though the total anthocyanin content decreased, which tends to occur naturally during the evolution of any wine. However, the addition of peptides from 4-hour hydrolysis of the red variety, regardless of their concentration, provoked a lightening effect of red wines, evidenced by higher values of L* and lower of C*ab. In contrast, these wines had visually perceptible colour differences (ΔE*ab > 3), mainly qualitative due to the higher values of hue (hab), but sensorially acceptable. In conclusion, the implementation of wines with peptidic hydrolysates from grape seed meal residue could be a promising technique for oenological industry.

 Acknowledgments:

We thank FEDER/Ministerio de Ciencia e Innovación – Agencia Estatal de Investigación (Project AGL2017-84793-C2) for financial support.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Poster

Authors

Mora-Garrido Ana Belén1, Escudero-Gilete M. Luisa1, González-Miret M. Lourdes1, Hereida Francisco J.1 and Cejudo-Bastante María Jesús1

1Food Colour and Quality Laboratory, Facultad de Farmacia, Universidad de Sevilla

Contact the author

Keywords

peptidic grape seed hydrolysates, differential tristimulus colorimetry, polyphenolic compounds, copigmentation, warm climate

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

IMPACT OF ABIOTIC AND BIOTIC FACTORS ON BIOADHESION PROPERTIES OF BRETTANOMYCES BRUXELLENSIS

Brettanomyces bruxellensis is an ubiquitous yeast associated with different fermentation media such as beer and kombucha, where its presence is beneficial to bring an aromatic typicity. However, it is a main spoilage yeast in wines, in which it produces volatile phenols responsible for organoleptic deviations causing significant economic losses (Chatonnet et al., 1992). Cellar and winery equipment’s are considered as the first source of contamination, during fermentation and wine ageing process (Connel et al., 2002). Indeed, it is possible to find B. bruxellensis in the air, on walls and floors of the cellars, on small materials, vats and barrels.

Effect of alcoholic strength on the phenolic and furfural compounds of Brandy de Jerez aged in Sherry Casks®

Brandy is a spirit drink produced from wine spirit aged for at least six months in oak casks with a capacity of less than 1000 L and minimum alcohol by volume (ABV) of 36%. During the aging process, physicochemical and sensory changes take place. Manifested by colour, flavour or aroma variations that improve the quality of the initial distillate.

GC-O and olfactoscan approaches to reveal premature aging markers in Chardonnay wine

Molecular markers of wine oxydation, such as sotolon or Strecker’s aldehydes that induce respectively nut or curry and boiled vegetables or wilted rose odors, can be percieved as a default by consumers. These volatile compounds are especially formed during the premature aging of wine, but it is likely that several contributing compounds are still unknown as is their combined contribution. This study was carried out to identify the markers of oxydation in Chardonnay wine by Gas Chromatography Olfactometry (GC-O) and to study the impact of these markers on the complex wine aromatic buffer using the Olfactoscan approach.A Chardonnay wine (2018-vintage), taken after malolactic fermentation without sulphites addition, was submitted to an artificial oxidation to simulate more or less prononced premature oxidation. Volatile compounds were extracted by Solid-Phase Extraction (SPE) and analysed by GC-O with a panel of 13 trained subjects. The same extract was also submitted to a second analysis based on the Olfactoscan technique, which allowed to evaluate the impact of each volatile compounds on the complex aromatic buffer of a non-oxidized wine delivered as background odor. Preliminary results revealed three types of behavior. On the one hand, several odor zones appeared only with the background odour, suggesting a synergy effect induced by the compounds in the aromatic buffer. Conversely, odor-active compounds could not be perceived within the background odor suggesting a masking effect. Finally several compounds were found to contribute as key odorants for wine oxydation once mixed with the aromatic buffer. These compounds are still to be identified using complementary techniques.

Seasonal dynamics of water and sugar compartmentalization in grape clusters under deficit irrigation

Water stress triggers functional compartmentalization in grapevines, influencing how resources are allocated to different plant organs.

Using NIR/SWIR hyperspectral camera mounted on a UAV to assess grapevine water status in a variably irrigated vineyard

Vineyards face climate change, increasing temperatures, and drought affecting vine water status. Water deficit affects plant physiology and can ultimately decrease yield and grape quality when it is not well managed. Monitoring vine water status and irrigation can help growers better manage their vineyards.