IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Effect of the addition of peptidic hydrolysates from grape pomace by-products to red wines in warm regions

Effect of the addition of peptidic hydrolysates from grape pomace by-products to red wines in warm regions

Abstract

High temperatures typical of warm climates cause the colour of red wines to become increasingly unstable over time. This is due to the fact that phenolic and technological maturities do not coincide at the time of harvest in these climates, in contrast to colder viniculture zones. As a consequence, the colour of wines decreases after months of storage within bottles or barrels due to copigmentation processes being hampered by a shortage of pigments and copigments.
This study has focused on improving the colour stability of red wines elaborated in warm climates by adding an enzymatic hydrolysate of defatted grape seed meal six months after fermentation of Syrah grapes cultivated in “Condado de Huelva” Designation of Origin (Spain). This defatted meal comes from the industrial processing of grape pomace, contributing to the reuse of this residue as a by-product. Two different types of defatted grape seed meal were used (from red and white grapes), which protein fraction was extracted and further submitted to enzymatic hydrolysis with Alcalase under alkaline conditions. Hydrolysis was carried out at two different times, 1 and 4 h, to obtain peptides of high and low molecular weight, which were added to the wine at two different concentrations: 1 g/L and 3 g/L, in triplicate. Differential tristimulus colorimetry (L*, C*ab, hab, ΔE*ab), copigmentation, molecular weight distribution, and polyphenolic content (HPLC-DAD) were studied in wines every month along six months of time evolution.
The addition of 3 g/L peptides from 1-hour hydrolysis showed a colour stabilization effect on red wines regardless of the grape variety, in the light of the higher values of chroma (C*ab) and copigmentation, even though the total anthocyanin content decreased, which tends to occur naturally during the evolution of any wine. However, the addition of peptides from 4-hour hydrolysis of the red variety, regardless of their concentration, provoked a lightening effect of red wines, evidenced by higher values of L* and lower of C*ab. In contrast, these wines had visually perceptible colour differences (ΔE*ab > 3), mainly qualitative due to the higher values of hue (hab), but sensorially acceptable. In conclusion, the implementation of wines with peptidic hydrolysates from grape seed meal residue could be a promising technique for oenological industry.

 Acknowledgments:

We thank FEDER/Ministerio de Ciencia e Innovación – Agencia Estatal de Investigación (Project AGL2017-84793-C2) for financial support.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Poster

Authors

Mora-Garrido Ana Belén1, Escudero-Gilete M. Luisa1, González-Miret M. Lourdes1, Hereida Francisco J.1 and Cejudo-Bastante María Jesús1

1Food Colour and Quality Laboratory, Facultad de Farmacia, Universidad de Sevilla

Contact the author

Keywords

peptidic grape seed hydrolysates, differential tristimulus colorimetry, polyphenolic compounds, copigmentation, warm climate

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

IMPACT OF ACIDIFICATION AT BOTTLING BY FUMARIC ACID ON RED WINE AFTER 2 YEARS

Global warming is responsible for a lack of organic acid in grape berries, leading to wines with higher pH and lower titrable acidity. The chemical, microbiological and organoleptic equilibriums are impacted by this change of organic acid concentration. It is common practice to acidify the wine in order to prevent these imbalances that can lead to wine defects and early spoilage. Tartaric acid (TA) is most commonly used by winemaker for wine acidification purposes. Fumaric acid (FA), which is authorized by the OIV in its member states for the inhibition of malolactic fermentation, could also be used as a potential acidification candidate since it has a better acidifying power than tartaric acid.

The terroir of winter hardiness: a three year investigation of spatial variation in winter hardiness, water status, yield, and berry composition of riesling in the niagara region using geomatic technologies

Grapevine winter hardiness is a key factor in vineyard success in many cool climate wine regions. Winter hardiness may be governed by several factors in addition to extreme weather conditions – e.g. soil factors (texture, chemical composition, moisture, drainage), vine water status, and yield– that are unique to each site.

VALORIZATION OF GRAPE WINE POMACE USING PULSED ELECTRIC FIELDS (PEF) AND SUPERCRITICAL CO₂ (SC CO₂) EXTRACTION

Wine grape pomace quantitatively and qualitatively represents the most important fraction of wine waste. Namely, this by-product makes ~ 20% of the total mass of vinified grapes, and it is characterized with high concentrations of polyphenolic antioxidants, as well as grape seed oil. Hence, valorization of wine pomace, as an alternative to traditionally employed disposal, has drown considerable interest in recent years. Earlier studies were mostly focused on the extraction of phenolics, while mechanisms enhancing the extraction of lipid fraction from grape pomace, as well as their impact on the grape seed oil quality are far less investigated.

Effect of stilbenes on malolactic fermentation performance of onoccocus oeni and lactiplantibacillus plantarum strains in wine production

Malolactic fermentation (MLF) is an important step in winemaking to improve wine quality through deacidification, increased microbial stability, and altered wine flavor. The phenolic composition of wine influences the growth and metabolism of lactic acid bacteria (lab) used for MLF.

Sensory evaluation of grape berries: predictive power for sensory properties of Sauvignon blanc, Riesling and Pinot noir wines

Sensory analysis of grape berries is a common tool to evaluate the degree of grape maturation and to make sound picking decisions.