IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Effect of the addition of peptidic hydrolysates from grape pomace by-products to red wines in warm regions

Effect of the addition of peptidic hydrolysates from grape pomace by-products to red wines in warm regions

Abstract

High temperatures typical of warm climates cause the colour of red wines to become increasingly unstable over time. This is due to the fact that phenolic and technological maturities do not coincide at the time of harvest in these climates, in contrast to colder viniculture zones. As a consequence, the colour of wines decreases after months of storage within bottles or barrels due to copigmentation processes being hampered by a shortage of pigments and copigments.
This study has focused on improving the colour stability of red wines elaborated in warm climates by adding an enzymatic hydrolysate of defatted grape seed meal six months after fermentation of Syrah grapes cultivated in “Condado de Huelva” Designation of Origin (Spain). This defatted meal comes from the industrial processing of grape pomace, contributing to the reuse of this residue as a by-product. Two different types of defatted grape seed meal were used (from red and white grapes), which protein fraction was extracted and further submitted to enzymatic hydrolysis with Alcalase under alkaline conditions. Hydrolysis was carried out at two different times, 1 and 4 h, to obtain peptides of high and low molecular weight, which were added to the wine at two different concentrations: 1 g/L and 3 g/L, in triplicate. Differential tristimulus colorimetry (L*, C*ab, hab, ΔE*ab), copigmentation, molecular weight distribution, and polyphenolic content (HPLC-DAD) were studied in wines every month along six months of time evolution.
The addition of 3 g/L peptides from 1-hour hydrolysis showed a colour stabilization effect on red wines regardless of the grape variety, in the light of the higher values of chroma (C*ab) and copigmentation, even though the total anthocyanin content decreased, which tends to occur naturally during the evolution of any wine. However, the addition of peptides from 4-hour hydrolysis of the red variety, regardless of their concentration, provoked a lightening effect of red wines, evidenced by higher values of L* and lower of C*ab. In contrast, these wines had visually perceptible colour differences (ΔE*ab > 3), mainly qualitative due to the higher values of hue (hab), but sensorially acceptable. In conclusion, the implementation of wines with peptidic hydrolysates from grape seed meal residue could be a promising technique for oenological industry.

 Acknowledgments:

We thank FEDER/Ministerio de Ciencia e Innovación – Agencia Estatal de Investigación (Project AGL2017-84793-C2) for financial support.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Poster

Authors

Mora-Garrido Ana Belén1, Escudero-Gilete M. Luisa1, González-Miret M. Lourdes1, Hereida Francisco J.1 and Cejudo-Bastante María Jesús1

1Food Colour and Quality Laboratory, Facultad de Farmacia, Universidad de Sevilla

Contact the author

Keywords

peptidic grape seed hydrolysates, differential tristimulus colorimetry, polyphenolic compounds, copigmentation, warm climate

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

How sensory quality of wines can be accessed as a trait in MAS grape vine breeding

In the context of the global crises of global warming, biodiversity and pollution, current agricultural practices need to be reconsidered.

Traditional agroforestry vineyards, sources of inspiration for the agroecological transition of viticulture

A unique “terroir” can be found in southern Bolivia, which combines the specific features of climate, topography and altitude of high valleys, with the management of grapevines staked on trees. It is one of the rare remnants of agroforestry viticulture. A survey was carried out among 29 grapegrowers in three valleys, to characterize the structure and management of these vineyards, and identify the services they expect from trees. Farms were small (2.2 ha on average) and 85% of vineyards were less than 1 ha. Viticulture was associated with vegetable, fruit and fodder production, sometimes in the same fields. Molle trees were found in all plots, together with one or two other native tree species. Traditional grapevine varieties such as Negra Criolla, Moscatel de Alejandría and Vicchoqueña were grown with a large range of densities from 1550 to 9500 vines ha-1. From 18 to 30% of them were staked on trees, with 1.2 to 4.9 vines per tree. The management of these vineyards (irrigation, fertilization and grapevine protection) was described, the most particular technical operation being the coordinated pruning of trees and grapevines. Three types of management could be identified in the three valleys. Grapegrowers had a clear idea of the ecosystem services they expected from trees in their vineyards. The main one was protection against climate hazards (hail, frost, flood). Then they expected benefits in terms of pest and disease control, improvement of soil fertility and resulting yield. At last, some producers claimed that tree-staking was quicker and cheaper than conventional trellising. It can be hypothesized then that agroforestry is a promising technique for the agroecological transition of viticulture. Its contribution to the “terroir” of the high valleys of southern Bolivia and its link with the specificities of the wines and spirits produced there remain to be explored.

PHOTO OXIDATION OF LUGANA WINES: INFLUENCE OF YEASTS AND RESIDUAL NITROGEN ON VSCS PROFILE

Lugana wines are made from Turbiana grapes. In recent times, many white and rosé wines are bottled and stored in flint glass bottles because of commercial appeal. However, this practice could worsen the aroma profile of the wine, especially as regards the development of volatile sulfur compounds (VSCs). This study aims to investigate the consequences of exposure to light in flint bottles on VSCs profile of Lugana wines fermented with two different yeasts and with different post-fermentation residual nitrogen.

Grapevine under nutrient stress: exploring the adaptive mechanisms in response to iron deficiency conditions

In plants, stress due to nutrient deficiency can significantly impair their development and productivity.

How to reduce SO2 additions in wine with the aid of non-conventional yeasts

Among the factors that influence the sensory quality, style, safety, sustainability, and sense of place of a wine, the contributions of microbial biodiversity are widely becoming more recognized. Throughout winemaking, multiple biochemical reactions are performed by a myriad of different microorganisms interacting in many ways.