IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Effect Of Grape Polysaccharides On The Volatile Composition Of Red Wines

Effect Of Grape Polysaccharides On The Volatile Composition Of Red Wines

Abstract

Yeast mannoproteins and derivates are polysaccharides produced from the cell walls of different yeast strains widely used in the winemaking and finning of wines to improve their overall stability and sensory properties. Some studies reported that mannoproteins maintain the wine aroma tending to be more appealing. On the contrary, grape polysaccharides are not commercially available, and the recovery of these compounds from grape by-products is nowadays a great challenge for the oenological research. These polysaccharides have a great potential in organoleptic finning since they have been reported to modulate the wine quality, as arabinogalactans which interacts with wine aroma compounds and increase their volatility (Ribeiro et al., 2014; Rinaldi et al., 2021).
In this study grape polysaccharide extracts obtained from different sources were used as finning agents at bottling in three wines from Vitis vinifera L. cv. Tempranillo and Graciano. Their effect on the volatile composition and profile was analyzed. Polysaccharides extracts were obtained from white pomace by-products (WP), red pomace by-products (RP), white must (WM), red must (RM), red wine (RW), and lees recovered after the winemaking (RL). Two more extracts with higher purification degrees were used (PE1 and PE2). The results were compared with a control (C) wine sample and with mannoproteins commercially available (CM).
The analysis of volatile compounds was performed using a GC-MS after a liquid-liquid extraction as described by Oliveira et al., 2006. Discriminant analyses were performed to differentiate the red wines by the fining extract used. WM, RM and CM wines were characterized by high contents of alcohols, C6 alcohols, some esters as ethyl isovalerate, acetates, acids, and terpenes. On the other hand, RW, RP, and RL wines were characterized by high contents of ethyl esters as ethyl lactate, ethyl hexanoate and ethyl octanoate, and volatile phenols, specially 4-vinylguaiacol and 4-ethylguaiacol. The wines treated with PE1 and PE2 were those which presented the lowest concentrations on most of the volatile compounds detected. Discriminant analyses showed that the use of the polysaccharide extracts modified the volatile composition of the wines.

Acknowledgements:

The authors would like to thank the Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) for the funding provided for this study through the project RTA2017-00005-C02-02.

References

Oliveira, J. M., Faria, M., Sá, F., Barros, F., & Araújo, I. M. (2006). C6-alcohols as varietal markers for assessment of wine origin. Analytica Chimica Acta, 563(1-2 SPEC. ISS.), 300–309. https://doi.org/10.1016/j.aca.2005.12.029
Rinaldi, A., Gonzalez, A., Moio, L., & Gambuti, A. (2021). Commercial mannoproteins improve the mouthfeel and colour of wines obtained by excessive tannin extraction. Molecules, 26(14). https://doi.org/10.3390/molecules26144133
Ribeiro, T., Fernandes, C., Nunes, F. M., Filipe-Ribeiro, L., & Cosme, F. (2014). Influence of the structural features of commercial mannoproteins in white wine protein stabilization and chemical and sensory properties. Food Chemistry, 159, 47–54. https://doi.org/10.1016/j.foodchem.2014.02.149

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Poster

Authors

Curiel-Fernández María1,2, Canalejo Diego1,2, Zhao Feng1,2, Martínez-Lapuente Leticia1,2, Ayestarán Belén1,2, Cano-Mozo Estela1,2, Pérez-Magariño Silvia1,2, Guadalupe Zenaida1,2

1Instituto Tecnológico Agrario de Castilla y León
2Consejería de Agricultura y Ganadería 

Contact the author

Keywords

By-product valorization, grape pomace, lees, organoleptic modulation, grape polysaccharides

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Somatic embryogenesis and organogenesis: driving regeneration forces behind grapevine genetic transformation

Cell pluripotency, enables the possibility to change the cellular fate, stimulating the reorganization and the formation of new vegetative structures from differentiated somatic tissues. Although several factors are implicated in determining the success of a breeding program through the use of modern biotechnological techniques, the definition of a specific regeneration strategy is fundamental to speed up and make these applications feasible.

Impacts of climate change on wine producer countries located north of the wine belt

Climate change poses significant challenges to the global wine sector, with cool-climate countries particularly vulnerable to its effects. The research employs a panel data analysis to investigate the impact of climate change on the wine industry in 66 countries, focusing on 11 cool-climate countries located north of the wine belt in the northern hemisphere. Utilizing data from OIV, FAO and climatic statistics from the climate change knowledge portal of the world bank spanning from 1961 to 2020, the research examines the relationship between temperature, precipitation, and wine production.

Sustaining wine identity through intra-varietal diversification

With contemporary climate change, cultivated Vitis vinifera L. is at risk as climate is a critical component in defining ecologically fitted plant materiel. While winegrowers can draw on the rich diversity among grapevine varieties to limit expected impacts (Morales-Castilla et al., 2020), replacing a signature variety that has created a sense of local distinctiveness may lead to several challenges. In order to sustain wine identity in uncertain climate outcomes, the study of intra-varietal diversity is important to reflect the adaptive and evolutionary potential of current cultivated varieties. The aim of this ongoing study is to understand to what extent can intra-varietal diversity be a climate change adaptation solution. With a focus on early (Sauvignon blanc, Riesling, Grolleau, Pinot noir) to moderate late (Chenin, Petit Verdot, Cabernet franc) ripening varieties, data was collected for flowering and veraison for the various studied accessions (from conservatory plots) and clones. For these phenological growing stages, heat requirements were established using nearby weather stations (adapted from the GFV model, Parker et al., 2013) and model performances were verified. Climate change projections were then integrated to predict the future behaviour of the intra-varietal diversity. Study findings highlight the strong phenotypic diversity of studied varieties and the importance of diversification to enhance climate change resilience. While model performances may require improvements, this study is the first step towards quantifying heat requirements of different clones and how they can provide adaptation solutions for winegrowers to sustain local wine identity in a global changing climate. As genetic diversity is an ongoing process through point mutations and epigenetic adaptations, perspective work is to explore clonal data from a wide variety of geographic locations.

Evaluation of colloidal stability in white and rosé wines investing Dynamic Light Scattering technology

Proteins constitute one of the three main components of grape juice and white wine, phenolic compounds and polysaccharides being the others. A specific group of the total grape-derived proteins resists degradation or adsorption during the winemaking process and remains in finished wine if not removed by the commonplace commercial practice of bentonite fining. While bentonite is effective in removing the problematic proteins, it is claimed to adversely affect the quality of the treated wine under certain conditions, through the removal of colour, flavor and texture compounds. A number of studies have indicated that different protein fractions require distinct bentonite concentrations for protein removal and consequent heat stabilization.

Application of fluorescence spectroscopy with multivariate analysis for authentication of Shiraz wines from different regions

Aim: To investigate the possibility of utilising simultaneous measurements of absorbance-transmittance and fluorescence excitation-emission matrix (A-TEEM) combined with chemometrics, as a robust method that gives rapid results for classification of wines from different regions of South Australia according to their Geographical Indication (GI), and to gain insight into the effect of terroir on inter regional variation.