IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Addition of Malvasia di Candia Aromatica must and marcs to Golden Ale beer wort to obtain different Italian Grape Ales

Addition of Malvasia di Candia Aromatica must and marcs to Golden Ale beer wort to obtain different Italian Grape Ales


Nowadays, the recovery of secondary resources of wine industry is insufficient and the developing of new products and adjuvants from secondary raw materials could become a relevant sector of research. The re-use of byproducts derived from winemaking could improve the sustainability of wine industry and give additional value to other food industries. In the last decades the number of craft breweries have significantly grown all over the world and food market saturation with new food products seemed to be at an all-time high, including alcoholic beverages. For this reason, many breweries started to produce non-conventional beers, also using different raw materials such as ancient grains, spices, and fruits, trying to put on the market something that previously did not exist. Italian Grape Ale (IGA) beers are produced starting from pils or pale malt and should not exhibit a roasty, stout like, profile. Grape or grape must can be pasteurized before the addition and used at different stages of brewing boil, primary/secondary fermentation, or aging. The addition can range from 5% to 40 % of the wort composition. A proper option for brewers could be the addition of an aromatic grape variety to beer wort. Malvasia di Candia aromatica (MaCA) is a grapevine (Vitis vinifera L.) cultivar (cv.) that produces aromatic white grapes and is mainly cultivated in the Emilia Romagna province of Piacenza. Another possibility to make new products in beer industry is related to grape marcs addition in different stages of the brewing process with a high added value from a chemical and nutritional point of view. This work studied the possible addition of MaCA grape must and marcs to Golden Ale beer wort in different percentages: 10 and 20%. Fermentations were carried out in triplicate with a control made of 100% beer wort. General parameters, organic acids (LC-DAD), aroma compounds (GC-MS), target polyphenols (LC-MS/MS) and sensory evaluation were carried out to evaluate changes after MaCA juice and marcs addition. Increasing in acidity values were measured in final products after MaCA juice addition compared to controls (1.98, 2.31, and 2.41 g/L of tartaric acid equivalent in beer controls, MaCA 10%, and MaCA 20%, respectively) and after MaCA marcs addition (1.98, 3.15, and 3.40 g/L of tartaric acid equivalent in beer controls, MaCA 10%, and MaCA 20%, respectively). Other results confirmed that beers with 20% MaCA juice addition and 10% MaCA marcs addition resulted more complex in aroma profile with the presence of free monoterpenic compounds, expecially β-citronellol, linalool, linalool oxides, nerol and α-terpineol. Sensory evaluation confirmed differences in aroma intensity and acidity perception between different beers. Panelists preferred the addition of 20 % of MaCA juice as the best option. Collaboration with a craft brewery will carried out to produce beers with addition of 20 % of MaCA juice and 10% of MaCA marcs in a 12-hL scale.


Publication date: June 23, 2022

Issue: IVAS 2022

Type: Poster


Romanini Elia1, Gabrielli Terenzio1, Leni Giulia2, Mulazzi Annalisa2, Braceschi Gian Paolo1, Chinnici Fabio3, Castro Marin Antonio3 and Lambri Milena1

1Department for Sustainable Food Process, Università Cattolica del Sacro Cuore
2Department of Animal Science, Food, and Nutrition, Università Cattolica del Sacro Cuore
3Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy

Contact the author


grape, marcs, byproducts, beermaking, IGA


IVAS 2022 | IVES Conference Series


Related articles…

Development of a strategy for measuring fruity aroma potential in red wine

Levels of esters derived from substituted acids increase during the first years of aging and some of them are strongly involved in red wine fruity aromatic expression.

Effect of multi-level and multi-scale spectral data source on vineyard state assessment

Currently, the main goal of agriculture is to promote the resilience of agricultural systems in a sustainable way through the improvement of use efficiency of farm resources, increasing crop yield and quality under climate change conditions. This last is expected to drastically modify plant growth, with possible negative effects, especially in arid and semi-arid regions of Europe on the viticultural sector. In this context, the monitoring of spatial behavior of grapevine during the growing season represents an opportunity to improve the plant management, winegrowers’ incomes, and to preserve the environmental health, but it has additional costs for the farmer. Nowadays, UAS equipped with a VIS-NIR multispectral camera (blue, green, red, red-edge, and NIR) represents a good and relatively cheap solution to assess plant status spatial information (by means of a limited set of spectral vegetation indices), representing important support in precision agriculture management during the growing season. While differences between UAS-based multispectral imagery and point-based spectroscopy are well discussed in the literature, their impact on plant status estimation by vegetation indices is not completely investigated in depth. The aim of this study was to assess the performance level of UAS-based multispectral (5 bands across 450-800nm spectral region with a spatial resolution of 5cm) imagery, reconstructed high-resolution satellite (Sentinel-2A) multispectral imagery (13 bands across 400-2500 nm with spatial resolution of <2 m) through Convolutional Neural Network (CNN) approach, and point-based field spectroscopy (collecting 600 wavelengths across 400-1000 nm spectral region with a surface footprint of 1-2 cm) in a plant status estimation application, and then, using Bayesian regularization artificial neural network for leaf chlorophyll content (LCC) and plant water status (LWP) prediction. The test site is a Greco vineyard of southern Italy, where detailed and precise records on soil and atmosphere systems, in-vivo plant monitoring of eco-physiological parameters have been conducted.

Terroir and sustainability: an analysis of brazilian vineyards from a territorial perspective

In the concept of sustainable viticulture proposed by the OIV, it can be noted that enhancing terroir is also one measure of sustainability. Thus, the territorial approach may offer an interesting viewpoint from which to consider this issue in a multi-perspective way.

Identification of arbuscular mycorrhizal fungi species preferentially associated with grapevine roots inoculated with commercial bioinoculants 

Arbuscular mycorrhizal fungi (AMF) form symbiotic associations with plant roots and can help plants acquire nutrients from the soil in exchange for photosynthetic carbon. Commercial bioinoculants containing AMF are widely available and represent a potential opportunity to reduce the dependence of grapevines on agrochemicals. However, which commercially available AMF species colonize vine roots and affect vine growth remains unknown. The aim of this study was to identify the AMF species from commercial bioinoculants that colonize grapevine roots using high-throughput sequencing, and to evaluate the performance of five commercial bioinoculants and their effects on own-rooted Cabernet sauvignon.

Precipitation variability in a temperate coastal region and how it affects Tannat and Albariño cultivars 

Climate is one of the main components that defines the development and behavior of the plant, conditioning the health status and the final quality of the grapes. In temperate coastal climates such as in Uruguay (latitude 35° S, longitude 55° O), precipitations during the growing season present high interannual variability, with a average of 100 mm per month. This variability means that plants must adapt to conditions from one year to the next.