IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 The interaction between wine polyphenolic classes and poly-L-proline is impacted by oxygen

The interaction between wine polyphenolic classes and poly-L-proline is impacted by oxygen


Oxygen plays a key role in the evolution of wine chemistry, within the non-volatile matrix. Polyphenol composition and structure, as well as the process of tannin polymerisation are directly impacted by oxidation, and this can occur during both fermentation and ageing. Polyphenols play an important role in red wine and exhibit a wide diversity in their structure and properties. They are responsible for wine colour, texture and taste (astringency, bitterness) and exhibit some health properties. The principal class of non-flavonoid polyphenolic compounds are the phenolic acids and stilbenes. Among the flavonoids, anthocyanins and tannins are the major structural classes. The aim of this study was to characterise the detailed response of wine polyphenolic structure and composition to an oxygen treatment applied during fermentation. A specific focus was to determine the interaction of discrete polyphenolic classes with poly-L-proline (PLP). A control Shiraz wine was prepared under reductive conditions during fermentation, in triplicate. To the same grape source, an aeration treatment was initiated on day 3 following a 1.8 °Bé decrease for 48 h at 5 L/min, also in triplicate.  After a 12-month ageing period, wines were fractionated where: F1 = Phenolic acids, F2 = flavan-3-ol monomers, F3 = flavan-3-ol oligomers, F4 = anthocyanins, pyranoanthocyanins; and F5 = polymeric proanthocyanidins, pigmented proanthocyanins and other derived complexes. The composition of fractions F1 to F4 was verified by LC-MS, and F5 was characterised by a combination of analytical techniques specific to proanthocyanidins. The interaction between the polyphenol fractions and PLP was measured by isothermal titration calorimetry (ITC). A strong binding interaction was observed between F1, the phenolic acids, and PLP by ITC, and was not affected by the oxygen treatment. In fact, a strong hydrophobic interaction and hydrogen bonding was implicated in the interaction. It was found that for fractions F2 and F3, no binding events with PLP were observed by ITC, irrespective of the oxygen level applied. Stronger binding events with PLP were observed for the F4 and F5 polyphenolic fractions, but interestingly, only in those prepared from wines which had oxygen treatment. Moreover, hydrophobic interaction and hydrogen bonding was detected just for the oxygen treatment for F4 and F5. Contrary to expectation, no binding with PLP could be detected for F4 and F5 from the control wine. Further investigation of the properties of the fractions was conducted to account for the differences observed, including their composition, hydrophobicity and aggregation. This presentation will provide new insights into the potential role of discrete polyphenolic classes in driving in-mouth sensory properties, like astringency, which might be elicited following binding with proline-rich salivary proteins.


Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article


Jouin Alicia1, Falconer Robert J.2, Waterlot Aude3, Day Martin1, Schmidt Simon1 and Bindon Keren1

1The Australian Wine Research Institute, PO Box 197, Glen Osmond, South Australia, 5064, Australia 
2Department of Chemical Engineering and Advanced Materials, University of Adelaide, Adelaide, SA, 5005, Australia
3Department of Food Science and Human Nutrition, Courtesy Faculty, Horticulture, Iowa State University, 2567 Food Sciences Building, 536 Farm House Lane, Ames, IA 50011, USA

Contact the author


Tannins, Anthocyanins, Oxygen, Isothermal Titration Calorimetry, Astringency


IVAS 2022 | IVES Conference Series


Related articles…

Building of a hierarchy of wines based on terroirs: an initiative from the producers of Muscadet

The Muscadet area is situated in the southeast of Nantes, close to the Atlantic coast. It constitutes the western extension
of the French vineyard “Loire Valley”. The Muscadet is renowned and often spontaneously linked to a white wine.
However it remains misconceived as an ordinary wine, lacking authenticity.

How the physical components of the terroir can differently intervene in French wines DPO definitions.Example of Côte de Nuits in Burgundy

European regulations describe what elements must be given in the specifications of DPO determination ; mainly production conditions, links between quality and products characteristics and the physical traits of the production area. These elements are given in the “link to terroir” paragraph relating natural and human factors, detailed product characteristics linked to the geographical area and at last interactions between product originality and the geographical area.

Vignobles sur les pentes en Bourgogne : l’aube d’un nouveau modèle de l’Antiquité au Moyen Âge

La découverte d’une vigne gallo-romaine en plaine à Gevrey-Chambertin (Côte-d’Or) constitue un point important pour la compréhension de la construction des terroirs viticoles de Bourgogne. Sa situation en plaine constitue pour nous le point de départ d’une large réflexion sur la mise en place du modèle de viticulture de coteau qui prévaut en Bourgogne et sur les facteurs de ce changement de norme de qualité viticole. Les sources mobilisées pour cette approche interdisciplinaire et diachronique sont géomorphologiques, archéologiques et textuelles.

Everything else, it’s work ”Socio-cultural dimensions of terroir among Bordeaux winemakers

In 2010, the OIV adopted a resolution that defines ‘terroir’. The OIV definition understands terroir as the result of the interactions between the physical specificities of a space and human labor, with an emphasis on the subsequently produced collective knowledge (OIV-VITI 333-2010); by doing so, it alludes to the social and cultural dimensions of terroir.

Swiss program for the creation of fungal disease resistant grape varieties in Switzerland

Grapevine breeding is part of the research program of Agroscope in Switzerland since 1965. From 1965 to 1995, the aim of the Vitis vinifera crosses was to obtain a high resistance to grey rot (Botrytis cinerea), one of the most virulent fungal pathogens in the Swiss vineyard. In 2021, the grape varieties released from this first breeding program covered 936 ha of the 15’000 ha of the Swiss vineyard.
In 1996, a second breeding program aimed at obtaining, by classical interspecific hybridization, grape varieties resistant to downy mildew (Plasmopara viticola) and powdery mildew (Erisyphe necator) and less sensitive to grey rot (Botrytis cinerea). In order to accelerate and make the selection process more reliable, an early biochemical test was developed based on the natural defense mechanisms of the vine against downy mildew (stilbene phytoalexins). The synthesis of stilbenes (i.e., resveratrol and its oxidized dimers - and -viniférine) and pterostilbenes (methylated derivative) is among the most efficient induced defense mechanisms of grapevine against fungal pathogens on both the leaves and the clusters.