IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Characterization and biological effects of extracts from winery by-products

Characterization and biological effects of extracts from winery by-products

Abstract

Pomace, stem, grapevine leaves, and vine shoots arise as so called winery by-products during the wine production process. Due to their high content of secondary plant metabolites, such as polyphenols, their usage as sources of bioactive compounds offers an opportunity to obtain value-added products for the food and pharmaceutical industry. The aim of the present study was to investigate extracts from winery by-products of Vitis vinifera L. cv. Riesling from the region ‚Pfalz‘ in Rhineland-Platinate, Germany with regard to their chemical composition and biological effect in vitro. Total phenolic contents (TPC) of pomace, stem, vine leaf, and vine shoot extracts were determined by Folin-Ciocalteu method and polyphenolic profiles were characterized by HPLC-UV/Vis-ESI-MS/MS. The extracts showed TPCs ranging from 432 to 665 mg GAE/g extract. Besides flavanols, as for example catechin, epicatechin and procyanidins, phenolic acids and flavonols, such as quercetin und kaempferol derivates were tentatively identified, amongst others, by HPLC-UV/Vis-ESI-MS/MS analysis in the negative ion mode. Stilbenes represent an additional group of polyphenols present in the extracts from winery by-products, including trans-resveratrol, piceid, piceatannol and ε-viniferin being identified. In the human hepatocarcinoma cell line HepG2 effects of the extracts on cell viability, intracellular ATP, the mitochondrial membrane potential (MMP), and tert-butyl hydroperoxide (TBH)-induced intracellular reactive oxygen species (ROS) were determined in vitro. Dose-dependent cytotoxic effects were observed besides protective effects regarding TBH-induced intracellular ROS level, and partially impaired MMP. Thus, winery by-products represent interesting sources of bioactive compounds exerting positive and/or negative effects on mitochondrial function in liver cells.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Poster

Authors

Fuchs Christine1, Bakuradze Tamara1, Stegmüller Simone1, Steinke Regina1 and Richling Elke1

1TU Kaiserslautern, Department of Chemistry, Division of Food Chemistry

Contact the author

Keywords

polyphenols, HPLC-UV/Vis-ESI-MS/MS, extracts of winery by-products, Vitis vinifera L. cf. Riesling, liver cells

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Fractionation of copper and iron in wine: Assessment of potential macromolecule and sulfur binding agents

Copper and iron are known to substantially impact wine stability through oxidative, reductive or colloidal phenomena. However, the binding of metal ions to different wine components under wine conditions, and the impact of this binding on the ability of the metal ions to induce spoilage processes, is not well understood. This study surveyed a range of red and white wines for an understanding of the variability of broad metal categories within the wines. The techniques utilized included an electrochemical constant current stripping potentiometry technique (ccSP), and solid phase extraction (SPE) fractionation of wine with subsequent analysis of the metal content of each fraction by inductively coupled plasma – optical emission spectroscopy (ICP-OES).

REDUCING NITROGEN FERTILIZATION ALTERS PHENOLIC PROFILES OF VITIS VINIFERA L. CV. CABERNET GERNISCHT WINE OF YANTAI, CHINA

Nitrogen (N) fertilizer is important for grape growth and the quality of wine. It is essential to address the mismatch between N application and wine composition. Cabernet Gernischt (Vitis vinifera L.), as one of the main wine-grape cultivars in China, was introduced to Yantai wine region in 1892. This grape cultivar is traditionally used for quality dry red wine with fruit, spices aroma, ruby red and full-bodied wines. In order to regulate vine growth and improve grape and wine quality, Cabernet Gernischt grapevines were subjected to decreased levels of N treatments, compared to normal N supply treatment, during grape growing seasons of 2019 and 2020.

FLAVONOID POTENTIAL OF MINORITY RED GRAPE VARIETIES

The alteration in the rainfall pattern and the increase in the temperatures associated to global climate change are already affecting wine production in many viticultural regions all around the world (1). In fact, grapes are nowadays ripening earlier from a technological point of view than in the past, but they are not necessarily mature from a phenolic point of view. Consequently, the wines made from these grapes can be unbalanced or show high alcohol content. Dramatic shifts in viticultural areas are currently being projected for the future (2).

Vineyard floor management intensity impacts soil health indicators and biodiversity across South Australian viticultural landscapes

Vineyard floors in warm, dry landscapes including those in South Australia, have traditionally been managed using intensive practices such as tillage and herbicides to control weeds and vegetation, thereby limiting competition with grapevines for water and nutrients in order to not compromise yields.

Untargeted metabolomics reveals the impact of cork oxygen transfer on non-volatile compounds during red wine ageing

During red wine aging, numerous chemical reactions occur, contributing to the modification and enhancement of the wine sensory parameters over time [1].