IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Hemisynthesis, NMR Characterization and UHPLC-Q-Orbitrap /MS² identification of (+)-Catechin oxidation products in red wines and grape seed extracts

Hemisynthesis, NMR Characterization and UHPLC-Q-Orbitrap /MS² identification of (+)-Catechin oxidation products in red wines and grape seed extracts

Abstract

(+)-Catechin—laccase oxidation dimeric standards were hemi-synthesized using laccase from Trametes versicolor in a water-ethanol solution at pH 3.6. Eight fractions corresponding to eight potential oxidation dimeric products were detected. The fractions profiles were compared with profiles obtained with two other oxidoreductases: polyphenoloxidase extracted from grapes and laccase from Botrytis cinerea. The profiles were very similar, although some minor differences suggested possible dissimilarities in the reactivity of these enzymes. Five fractions were then isolated and analyzed by 1D and 2D NMR spectroscopy. The addition of traces of cadmium nitrate in the samples solubilized in acetone-d6 led to fully resolved NMR signals of phenolic protons, allowing the unambiguous structural determination of six reaction products, one of the fractions containing two enantiomers. These products were then analyzed in grape seed extracts and red wines (UHPLC-Q-Orbitrap MS). The different dimers had different fragmentation patterns according to their interflavan linkage position. Oxidation dimeric compounds had a specific fragment ion at m/z 393, missing for B-Type dimers fragmentations. A fragment ion at m/z 291 occurred and was specific for oxidation dimeric compounds with a C-O-C linkage. Higher level oxidation products had abundant specific fragments: m/z 425, 397 and 245. These fragmentations were useful to identify them in complex samples such as grape seed extracts and wines. Three grape varieties and three ripening stages were selected and the corresponding seed extracts were obtained. The analyses revealed an increasing trend for the oxidation markers during grape ripening. The analysis of Syrah wines (2018, 2014, 2010) showed a decreasing trend of these molecules during wine ageing which might be due to further oxidation.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Saucier Cedric1, Deshaies Stacy1, Le Guernevé Christine1,2, Sommerer Nicolas1,2, Garcia Lucas Suc François1, Mouls Laetitia1

1SPO, Université de Montpellier, INRAE, Institut Agro, UMR SPO, Faculté de Pharmacie, 15 avenue Charles Flahault, 34000 Montpellier, France
2INRAE, PROBE Research Infrastructure, PFP Polyphenol Facility, 34060 Montpellier, France

Contact the author

Keywords

wine, grape, polyphenol,oxidation, catechin

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

An intra-block study of bunch zone air temperature and its impact on berry and wine attributes

Temperature is a key environmental factor affecting grape primary and secondary metabolites. Even if several mesoscale studies have already been conducted on temperature
especially within a Protected Designation of Origin area, few data are available at an intra-block scale. The present study aimed at i) assessing the variability in bunch zone air temperature within a single vineyard block and the temporal stability of temperature spatial patterns, ii) understanding temperature drivers and
iii) identifying the impact of temperature on grape berry attributes.

EFFECT OF MANNOPROTEIN-RICH EXTRACTS FROM WINE LEES ON PHENOLICCOMPOSITION AND COLOUR OF RED WINE

In 2022, wine production was estimated at around 260 million hl. This high production rate implies to generate a large amount of by-products, which include grape pomace, grape stalks and wine lees. It is estimated that processing 100 tons of grapes leads to ~ 22 tons of by-products from which ~ 6 tons are lees [1]. Wine lees are a sludge-looking material mostly made of dead and living yeast cells, yeast debris and other particles that precipitate at the bottom of wine tanks after alcoholic fermentation. Unlike grape pomace or grape stalks, few strategies have been proposed for the recovery and valorisation of wine less [2].

A look back at 20 years of exploring the future of the vines and wines sector

What if, in 25 years, most wines were dealcoholized and flavored ? What if vines were only cultivated to combat erosion, store carbon, and provide anthocyanins…? What if climate change completely changed the list of vine varieties cultivable for wine production in France? What if food stores had completely disappeared in favor of virtual platforms? And if… because the long-term future is not predetermined and therefore not knowable, because the future is open to several possibilities, because the future does not emerge from nothing but from the present which conceals heavy trends and weak signals, prospective approaches make it possible to consider the room for maneuver that actors have to promote the advent of a future, which we can hope to be chosen, at least in part.

Long term influence of a cover crop in the agronomic and oenological performance of CV. Chardonnay

Cover crops are acknowledged to be an interesting tool to produce
higher quality grapes in red varieties, as they generally reduce vine vigour and yield. However, their incidence in white wine quality is not clear, since higher nitrogen availability can play an important positive
role, and cover crops may compete for this nutrient. The possible reduction in available nitrogen can also modify the fermentation processes, as well as the synthesis of aromas in the wine. The aim of this work was to evaluate the long-term effect of a grass cover crop on grape and wine quality.

The effect of management practices and landscape context on vineyard biodiversity

Intensification is considered one of the major drivers of biodiversity loss in farmland. The more intensive management practices that have been adopted the last decades, contributed to species declines from all taxonomic groups. Moreover, agricultural intensification has led to an important change of land use. Complex, mixed agro-ecosystems with cultivated and non-cultivated habitats have been converted to simplified, intensive and homogeneous ones with severe effects on biodiversity.