IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Hemisynthesis, NMR Characterization and UHPLC-Q-Orbitrap /MS² identification of (+)-Catechin oxidation products in red wines and grape seed extracts

Hemisynthesis, NMR Characterization and UHPLC-Q-Orbitrap /MS² identification of (+)-Catechin oxidation products in red wines and grape seed extracts

Abstract

(+)-Catechin—laccase oxidation dimeric standards were hemi-synthesized using laccase from Trametes versicolor in a water-ethanol solution at pH 3.6. Eight fractions corresponding to eight potential oxidation dimeric products were detected. The fractions profiles were compared with profiles obtained with two other oxidoreductases: polyphenoloxidase extracted from grapes and laccase from Botrytis cinerea. The profiles were very similar, although some minor differences suggested possible dissimilarities in the reactivity of these enzymes. Five fractions were then isolated and analyzed by 1D and 2D NMR spectroscopy. The addition of traces of cadmium nitrate in the samples solubilized in acetone-d6 led to fully resolved NMR signals of phenolic protons, allowing the unambiguous structural determination of six reaction products, one of the fractions containing two enantiomers. These products were then analyzed in grape seed extracts and red wines (UHPLC-Q-Orbitrap MS). The different dimers had different fragmentation patterns according to their interflavan linkage position. Oxidation dimeric compounds had a specific fragment ion at m/z 393, missing for B-Type dimers fragmentations. A fragment ion at m/z 291 occurred and was specific for oxidation dimeric compounds with a C-O-C linkage. Higher level oxidation products had abundant specific fragments: m/z 425, 397 and 245. These fragmentations were useful to identify them in complex samples such as grape seed extracts and wines. Three grape varieties and three ripening stages were selected and the corresponding seed extracts were obtained. The analyses revealed an increasing trend for the oxidation markers during grape ripening. The analysis of Syrah wines (2018, 2014, 2010) showed a decreasing trend of these molecules during wine ageing which might be due to further oxidation.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Saucier Cedric1, Deshaies Stacy1, Le Guernevé Christine1,2, Sommerer Nicolas1,2, Garcia Lucas Suc François1, Mouls Laetitia1

1SPO, Université de Montpellier, INRAE, Institut Agro, UMR SPO, Faculté de Pharmacie, 15 avenue Charles Flahault, 34000 Montpellier, France
2INRAE, PROBE Research Infrastructure, PFP Polyphenol Facility, 34060 Montpellier, France

Contact the author

Keywords

wine, grape, polyphenol,oxidation, catechin

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Phenology and maturation of Cabernet Sauvignon grapes from young vineyards at Santa Catarina state, Brazil – a survey of vineyard altitude and mesoclimat influences

Cabernet Sauvignon grapes from recently planted vines in Santa Catarina State (Brazil), were sampled during ripening from the 2005 and 2006 vintages.

Epigenetics: an innovative lever for grapevine breeding in times of climatic changes

In this video recording of the IVES science meeting 2025, Margot Berger (INRAE, UMR1287 EGFV, Institut des Sciences de la Vigne et du Vin, Villenave d’Ornon, France) speaks about epigenetics as an innovative lever for grapevine breeding in times of climatic changes. This presentation is based on an original article accessible for free on OENO One.

Chemical and sensory quality, environmental sustainability, and consumer acceptance of South Tyrolean wines produced from hybrid grape varieties

Disease-resistant hybrid grape cultivars (DRHGCs) are hybrids of Vitis vinifera varieties with other Vitis species, and they are endowed with greater resistance to specific fungal diseases, enabling a potential reduction in the application of pesticides in the vineyard.

Pinot blanc: how terroir and pressing techniques impact on the must composition and wine quality

This study investigates how different pressing techniques impact on the sensory profile of Pinot Blanc wines sourced from different terroirs.

Sustainable wine industry: supercritical fluid extraction as key technology for biorefinery enhancement

Supercritical carbon dioxide (sc-CO2) extraction is an environmentally friendly technology employed for bioactive compounds recovery from various natural sources and biomasses. The advantages of sc-co2 extraction include its selectivity, relatively mild operating conditions, which minimize the degradation of sensitive compounds, and the absence of potentially harmful organic solvents.