IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Hemisynthesis, NMR Characterization and UHPLC-Q-Orbitrap /MS² identification of (+)-Catechin oxidation products in red wines and grape seed extracts

Hemisynthesis, NMR Characterization and UHPLC-Q-Orbitrap /MS² identification of (+)-Catechin oxidation products in red wines and grape seed extracts

Abstract

(+)-Catechin—laccase oxidation dimeric standards were hemi-synthesized using laccase from Trametes versicolor in a water-ethanol solution at pH 3.6. Eight fractions corresponding to eight potential oxidation dimeric products were detected. The fractions profiles were compared with profiles obtained with two other oxidoreductases: polyphenoloxidase extracted from grapes and laccase from Botrytis cinerea. The profiles were very similar, although some minor differences suggested possible dissimilarities in the reactivity of these enzymes. Five fractions were then isolated and analyzed by 1D and 2D NMR spectroscopy. The addition of traces of cadmium nitrate in the samples solubilized in acetone-d6 led to fully resolved NMR signals of phenolic protons, allowing the unambiguous structural determination of six reaction products, one of the fractions containing two enantiomers. These products were then analyzed in grape seed extracts and red wines (UHPLC-Q-Orbitrap MS). The different dimers had different fragmentation patterns according to their interflavan linkage position. Oxidation dimeric compounds had a specific fragment ion at m/z 393, missing for B-Type dimers fragmentations. A fragment ion at m/z 291 occurred and was specific for oxidation dimeric compounds with a C-O-C linkage. Higher level oxidation products had abundant specific fragments: m/z 425, 397 and 245. These fragmentations were useful to identify them in complex samples such as grape seed extracts and wines. Three grape varieties and three ripening stages were selected and the corresponding seed extracts were obtained. The analyses revealed an increasing trend for the oxidation markers during grape ripening. The analysis of Syrah wines (2018, 2014, 2010) showed a decreasing trend of these molecules during wine ageing which might be due to further oxidation.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Saucier Cedric1, Deshaies Stacy1, Le Guernevé Christine1,2, Sommerer Nicolas1,2, Garcia Lucas Suc François1, Mouls Laetitia1

1SPO, Université de Montpellier, INRAE, Institut Agro, UMR SPO, Faculté de Pharmacie, 15 avenue Charles Flahault, 34000 Montpellier, France
2INRAE, PROBE Research Infrastructure, PFP Polyphenol Facility, 34060 Montpellier, France

Contact the author

Keywords

wine, grape, polyphenol,oxidation, catechin

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Effect of “Terroir” on quanti-qualitative paramethers of “vino nobile di Montepulciano”

In this last ten years period, there has been many integrated and interdisciplinary studies to determine the aptitude of different zones to viticulture (Lulli et al., 1989 ; Costantini, 1992 ; Fregoni et al., 1992). The researches needed some différent knowledges about environment characteristics (soil, climate), ecology, vineyard management, vine genetic, winemaking and sensory analysis. The interaction of all these knowledge produced the assessment about the environmental vocation (Scienza et al., 1992). By means of this metodology, the “viticultural vocation” joined the word “zoning”, that is the territory parting for its ecopedological and geographical characteristics in relation to adaptative answer of winegrape (Morlat, 1989).

Paysages viticoles et terroir dans l’OAC Ribeira Sacra (Galice, NO de l’Espagne)

The concept of Appellation d’Origine Contrôlée (AOC) is based on the existence of a link between the characteristics of the terroir and the quality and typicality of the production (DELAS, 2000). If for a long time, this link only appeared as the fruit of empiricism, the research undertaken recently has made it possible to scientifically establish the complex relationships between the functioning of natural environments and the ability to produce quality.

VITIGEOSS Business Service: Task scheduling optimization in vineyards

Agriculture plantations are complex systems whose performance critically depends on the execution of several types of tasks with precise timing and efficiency to respond to different external factors. This is particularly true for orchards like vineyards, which need to be strictly monitored and regulated, as they are sensitive to diverse types of pests, and climate conditions. In these environments, managing and optimally scheduling the available work force and resources is not trivial and is usually done by teams of senior managers based on their experience. In this regard, having a baseline schedule could help them in the decision process and improve their results, in terms of time and resources spent.

Investigating the conceptualization and practices linked to peppery notes in Syrah red wines by French winemakers from different regions

The peppery attribute is often used to describe the aroma of Syrah wines. Rotundone was identified as the main aroma compound responsible for these notes. A significant percentage of anosmic respondents to this molecule was reported in previous studies. However, in most cases, these anosmic respondents, formally tested through three-alternative forced choice (3AFC), frequently declare being able to perceive peppery notes in wines. The main objective of this study was to investigate how anosmic French producers from two different regions conceptualize the peppery notes in Syrah red wines, and how they link it to production practices in comparison with non-anosmic producers.

Exploring typicity in Nebbiolo wines across different areas through chemical analysis

“Nebbiolo” is a red winegrape variety well known to produce monovarietal wines in Piemonte, Valle d’Aosta, and Lombardia regions, taking part to 7 DOCG (Denominazione di Origine Controllata e Garantita) and 22 DOC (Denominazione di Origine Controllata) protected designations of origin (PDO) [1,2].