IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Influence of successive oxygen saturations of a grape juice, supplemented or not with laccase, on its color and hydroxycinnamic acids concentration

Influence of successive oxygen saturations of a grape juice, supplemented or not with laccase, on its color and hydroxycinnamic acids concentration


Aim: This work studies how successive O2 saturations affects the color and hydroxycinnamic
acids concentration in the absence and presence of laccase from B. cinerea with the aim of better understanding the browning processes.

Materials and methods: Grapes of Muscat of Alexandria were harvested and pressed with a vertical press to extract 60% of their juice. Aliquots of 30 mL of this must were placed in 60 mL flasks equipped with a pill (PreSens Precision Sensing GmbH) for measuring oxygen by luminescence (Nomasense TM O2 Trace Oxygen Analyzer). These flasks were added or not with SO2 (50 mg/L) and with 2 UA/mL of laccase from B. cinerea (Giménez et al., 2022). All operations were carried out with a continuous nitrogen stream to protect the grape juice from air oxygen. The grape juices were then saturated in O2. The flasks were kept at 20±2 °C and O2 was monitored (Diéval et al., 2011). Once O2 was completely consumed, this operation was repeated twice to reach a total of three O2 saturations. Absorbances at 420, 320 and 280 nm were determined in all the samples. Hydroxycinnamic acids and GRP were analyzed by RP-HPLC-DAD-ESI-MS (Lago-Vanzela et al., 2013).

Results and discussion: Samples without SO2 and laccase consumed O2 after the 2st saturation in around 1 hour with an initial O2 consumption rate (OCR) of 0.262±0.009 mg of O2/minute. Surprisingly, no significant differences were found in the OCR of the samples supplemented with laccase in the 1st saturation (0.266±0.075). However, the OCR decreased significantly for the 2nd and 3rd saturations in the case of the samples without laccase (0.128±0.003 and 0.101±0.011 respectively) whereas no significant decrease was observed when laccase was present (0.268±0.013 and 0.238±0.049 respectively). The supplementation with SO2 almost completely inhibited OCR in both cases, without and with laccase (0.006±0.002 and 0.011±0.003 respectively). The A420 nm (yellow color) increased after each saturation and this augmentation was significant higher in the samples supplemented with laccase. In contrast, the A320 nm (hydroxycinnamic acids) and A280 nm (total phenolic compounds) do the opposite. Finally, caftaric and cutaric acids and in a minor extent fertaric acid concentrations decreased after each saturation and this decrease was very similar in the samples supplemented or not with laccase. In contrast, the samples supplemented with SO2 hardly showed changes in the different absorbances or in the hydroxycinnamic acids.


These results confirm that SO2 is very effective to prevent browning even in the presence of laccase. This data also indicate that the presence of laccase provokes higher browning even consuming the same O2 than without its presence, probably because can use more substrates than natural grape tyrosinase


Diéval, J.B., Vidal, S., & Aagaard, O. (2011). Measurement of the oxygen transmission rate of co-extruded wine bottle closures using a luminescence-based technique. Packaging Technology and Science, 24, 375–385.
Giménez, P., Anguela, S., Just-Borras, A., Pons-Mercadé, P., Vignault, A., Canals, J.M., Teissedre, P.L., Zamora, F. (2022) Development of a synthetic model to measure browning caused by laccase activity from Botrytis cinerea. LWT – Food Science and Technology 154 (2022) 112871. 
Lago-Vanzela, E.S., Rebello, L.P.G., Ramos, A.M., Stringheta, P.C., Da-Silva, R., García-Romero, E., Gómez-Alonso, S. and Hermosín-Gutiérrez, I. (2013) Chromatic characteristics and color-related phenolic composition of Brazilian young red wines made from the hybrid grape cultivar BRS Violeta (‘BRS Rúbea’ × ‘IAC 1398-21’). Food Research International 54, 33–43.


Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article


Zamora Fernando 1, Giménez Pol1, Just-Borras Arnau1, Solé-Clua Ignasi1, Pérez-Navarro José2, Gombau Jordi1, Gómez-Alonso Sergio2 and Canals Joan Miquel1

1Departament de Bioquímica i Biotecnologia, Facultat d’Enologia de Tarragona, Universitat Rovira i Virgili, C/Marcel.li Domingo s/n, 43007 Tarragona, Spain
2Universidad de Castilla-La Mancha, Instituto Regional de Investigación Científica Aplicada. Ciudad Real, Spain

Contact the author


Grape Juice, Oxidation, Browning, Laccase, Hydroxycinnamic Acids


IVAS 2022 | IVES Conference Series


Related articles…

Biosurfactant from corn-milling industry improves the release of phenolic compounds during red winemaking

AIM: Biosurfactants can be used as emulsifier agents to improve the taste, flavour, and quality of food-products with minimal health hazards [1]. They are surface-active compounds with antioxidant and solubilizing properties [2].

Flavanol glycosides in grapes and wines : the key missing molecular intermediates in condensed tannin biosynthesis ?

Polyphenols are present in a wide variety of plants and foods such as tea, cacao and grape1. An important sub-class of these compounds is the flavanols present in grapes and wines as monomers (e.g (+)-catechin or (-)-epicatechin), or polymers also called condensed tannins or proanthocyanidins. They have important antioxidant properties2 but their biosynthesis remains partly unknown. Some recent studies have focused on the role of glycosylated intermediates that are involved in the transport of the monomers and may serve as precursors in the polymerization mechanism3, 4. The global objective of this work is to identify flavanol glycosides in grapes or wines, describe their structure and determine their abundance during grape development and in wine.

Pinot blanc: how terroir and pressing techniques impact on the must composition and wine quality

This study investigates how different pressing techniques impact on the sensory profile of Pinot Blanc wines sourced from different terroirs.

Influence of inactive dry yeast treatments during grape ripening on postharvest berry skin texture parameters and phenolic compounds extractability

Inactive dry yeast treatments in the vineyard are a tool used with the aim to improve the concentration and quality of secondary metabolites in grapes, leading to a better differentiation of the wines made from grapes differently treated. In this work, a foliar spraying treatment with yeast derivatives specifically designed to be used with the patent pending application technology of Lallemand Inc. Canada (LalVigne® Mature, Lallemand Inc., Montreal, Canada) was tested on Vitis vinifera L. cv. Barbera and Nebbiolo black winegrapes. The aim was to evaluate the effect of this treatment on the phenolic compounds accumulation, the skin physical-mechanical properties and the related phenolic extractability. Prior to analysis, the berries were sorted by flotation in order to evaluate their distribution by density class, and to determine the skin texture parameters of berries with different sugar contents, thus understanding also the ripening effect.

From vineyard to bottle. Rationalizing grape compositional drivers of the expression of “Amarone della Valpolicella” terroir

Valpolicella is a famous Italian wine-producing region. One of its main characteristic is the intensive use of grapes that are submitted to post-harvest withering. This is rather unique in the context of red wine, especially for the production of a dry red wine such as Amarone. Amarone wines produced in Valpolicella different geographic origin are anecdotally believed to be aromatically different, although there is no systematic study addressing the chemical bases of such diversity. Aroma is the product of a biochemical and technological series of steps, resulting from the contribution of different volatile molecules deriving from grapes, fermentations, and reactions linked to aging, as well as one of the most important features in the expression of the geographic identity and sensory uniqueness of a wine.