IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Kinetic investigations of the Gewürztraminer volatile organic compounds and color at different temperatures and pHs

Kinetic investigations of the Gewürztraminer volatile organic compounds and color at different temperatures and pHs

Abstract

Gewürztraminer is a well-known wine famous for its aroma profile, which is characterized by rose petals, cloves, lychees, and other tropical fruit notes. It is cultivated worldwide, including the Trentino Alto Adige region located in northern Italy, especially in the Tramin zone, and it has long been studied trying to understand what the most characterizing volatile aroma components are [1-4]. The terpenes (geraniol, cis rose oxide, citronellol, and linalool) are between the major responsible for the characteristic floral aroma of this cultivar’s grapes and wines. Throughout the winemaking and storage, acid-catalysed rearrangements take place producing cyclic and hydroxylated forms of the above terpenes, which generally have minor perception thresholds and so the wine’s floral aroma character decreases [5]. It has been demonstrated that the temperature and pH strongly influence these reactions, however their kinetics are not studied in detail.

The first aim of this work was to develop and validate a fast, modern, sensitive, selective, robust, and comprehensive protocol for the quantification of primary, secondary, and tertiary wine volatile compounds by using solid-phase extraction (SPE) cartridges for the sample preparation and a fast GC-MS/MS for analysis [1]. Second aim was to apply this protocol and study the kinetics of the reactions occurring on the Gewürztraminer wine volatile compounds during its storage at various temperatures and pHs. In parallel also
the colour of the wines was monitored by using the CIELAB method. The produced method gave us the possibility to measure 64 aroma compounds, with big importance in wine science, by using fewer organic solvents, having short chromatographic run, and increasing specificity and sensitivity due to the MRM MS-mode used.

The results of the second part of the study, demonstrated the behaviour of volatile aroma compounds, with their absolute concentrations. The investigated reactions included the degradation of the linear terpenes (linalool, geraniol, nerol, etc), the ethyl esters of fatty
acids and volatile phenols on the one hand; and the formation of the cyclic terpenes (1,4-cineole, 1,8-cineole, terpineol, etc), the norisoprenoids (e.g. TDN and safranal) and the diprotic organic acids esters on the other hand.

In conclusion, we developed a modern protocol for the analysis of the wine aroma compounds and we underlined some key characteristics that a winemaker should take in consideration in the Gewürztraminer production and aging/storage. 

References

1. Carlin, S.; Lotti, C.; Correggi, L.; Mattivi, F.; Arapitsas, P.; Vrhovsek, U. “Measurement of the effect of accelerated aging on the aromatic compounds of Gewürztraminer and Teroldego wines, using a new SPE-GC-MS /MS protocol” Metabolites 2022, 12(2), 180.
2. Versini, G. Sull’aroma Del Vino “Traminer Aromatico” o “Gewürztraminer.” VIGNEVINI 1985, 12, 57–65.
3. Guth, H. Identification of Character Impact Odorants of Different White Wine Varieties. J. Agric. Food Chem. 1997, 45, 3022–3026. 
4. Román, T.; Tonidandel, T.; Larcher, R.; Celotti, E.; Nicolini, G. Importance of Polyfunctional Thiols on Semi-Industrial Gewürztraminer Wines and the Correlation to Technological Treatments. Eur. Food Res. Technol. 2018, 244, 379–386. 
5. Slaghenaufi, D.; Ugliano, M. “Norisoprenoids, Sesquiterpenes and Terpenoids Content of Valpolicella Wines During Aging: Investigating Aroma Potential in Relationship to Evolution of Tobacco and Balsamic Aroma in Aged Wine.” Front. Chem. 2018, 6.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Carlin Silvia1, Lotti Cesare1, Rapaccioli Attilio1, Mattivi, Fulvio1,2, Trenti Gianmaria3, Vrhovsek Urska1 and Arapitsas Panagiotis1,4

1Metabolomics Unit, Research and Innovation Centre Edmund Mach Foundation, Via Edmund Mach 1, 38010 San Michele all’ Adige, Italy
2Department of Cellular Computational and Integrative Biology, University of Trento, Via Sommarive 9, 38123 Povo, Trento, Italy
3Winery, Edmund Mach Foundation, Via Edmund Mach 1, 38010 San Michele all’Adige, Italy
4Department of Wine, Vine and Beverage Sciences, School of Food Science, University of West Attica, Ag. Spyridonos str, Egaleo, 12243 Athens, Greece.

Contact the author

Keywords

fastGC, accelerated aging, storage, terpenes, Cielab

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Challenges and opportunities for increasing organic carbon in vineyard soils: perspectives of extension specialists

Increasing soil organic carbon (SOC) in vineyards enhances soil health with associated benefits for climate change resilience and mitigation.

Use of a new, miniaturized, low-cost spectral sensor to estimate and map the vineyard water status from a mobile 

Optimizing the use of water and improving irrigation strategies has become increasingly important in most winegrowing countries due to the consequences of climate change, which are leading to more frequent droughts, heat waves, or alteration of precipitation patterns. Optimized irrigation scheduling can only be based on a reliable knowledge of the vineyard water status.

In this context, this work aims at the development of a novel methodology, using a contactless, miniaturized, low-cost NIR spectral tool to monitor (on-the-go) the vineyard water status variability. On-the-go spectral measurements were acquired in the vineyard using a NIR micro spectrometer, operating in the 900–1900 nm spectral range, from a ground vehicle moving at 3 km/h. Spectral measurements were collected on the northeast side of the canopy across four different dates (July 8th, 14th, 21st and August 12th) during 2021 season in a commercial vineyard (3 ha). Grapevines of Vitis vinifera L. Graciano planted on a VSP trellis were monitored at solar noon using stem water potential (Ψs) as reference indicators of plant water status. In total, 108 measurements of Ψs were taken (27 vines per date).

Calibration and prediction models were performed using Partial Least Squares (PLS) regression. The best prediction models for grapevine water status yielded a determination coefficient of cross-validation (r2cv) of 0.67 and a root mean square error of cross-validation (RMSEcv) of 0.131 MPa. This predictive model was employed to map the spatial variability of the vineyard water status and provided useful, practical information towards the implementation of appropriate irrigation strategies. The outcomes presented in this work show the great potential of this low-cost methodology to assess the vineyard stem water potential and its spatial variability in a commercial vineyard.

Global warming effects on grape growing climate zones within the Rioja Appllation (DOCa Rioja) in north Spain

Aims: The aims of this work were (1) to assess the changes in some of the main bioclimatic indices used for climate viticultural zoning within the Rioja Appellation area in the north of Spain between 1950-2014 (60 years), and (2) to carry out a comprehensive sociological evaluation among grapegrowers and winemakers of this region, to better understand the impact of climate change on their activity, their degree of concern about it and the potential adaptation measures they would be willing to adopt to cope with it in future years.

Reduction of herbaceous aromas by wine lactic acid bacteria mediated degradation of volatile aldehydes

Consumers typically prefer wines with floral and fruity aromas over those presenting green-pepper, vegetal or herbaceous notes. Pyrazines have been identified as causatives for herbaceous notes in wines, especially Bordeaux reds. However, pyrazines are not universally responsible for herbaceousness, and several other wine volatile compounds are known to produce distinct vegetal/herbaceous aromas in wines. Specifically, volatile aldehydes elicit sensations of herbaceousness or grassiness and have been described in wines well above their perception thresholds.

Precipitation variability in a temperate coastal region and how it affects Tannat and Albariño cultivars 

Climate is one of the main components that defines the development and behavior of the plant, conditioning the health status and the final quality of the grapes. In temperate coastal climates such as in Uruguay (latitude 35° S, longitude 55° O), precipitations during the growing season present high interannual variability, with a average of 100 mm per month. This variability means that plants must adapt to conditions from one year to the next.