IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Kinetic investigations of the Gewürztraminer volatile organic compounds and color at different temperatures and pHs

Kinetic investigations of the Gewürztraminer volatile organic compounds and color at different temperatures and pHs

Abstract

Gewürztraminer is a well-known wine famous for its aroma profile, which is characterized by rose petals, cloves, lychees, and other tropical fruit notes. It is cultivated worldwide, including the Trentino Alto Adige region located in northern Italy, especially in the Tramin zone, and it has long been studied trying to understand what the most characterizing volatile aroma components are [1-4]. The terpenes (geraniol, cis rose oxide, citronellol, and linalool) are between the major responsible for the characteristic floral aroma of this cultivar’s grapes and wines. Throughout the winemaking and storage, acid-catalysed rearrangements take place producing cyclic and hydroxylated forms of the above terpenes, which generally have minor perception thresholds and so the wine’s floral aroma character decreases [5]. It has been demonstrated that the temperature and pH strongly influence these reactions, however their kinetics are not studied in detail.

The first aim of this work was to develop and validate a fast, modern, sensitive, selective, robust, and comprehensive protocol for the quantification of primary, secondary, and tertiary wine volatile compounds by using solid-phase extraction (SPE) cartridges for the sample preparation and a fast GC-MS/MS for analysis [1]. Second aim was to apply this protocol and study the kinetics of the reactions occurring on the Gewürztraminer wine volatile compounds during its storage at various temperatures and pHs. In parallel also
the colour of the wines was monitored by using the CIELAB method. The produced method gave us the possibility to measure 64 aroma compounds, with big importance in wine science, by using fewer organic solvents, having short chromatographic run, and increasing specificity and sensitivity due to the MRM MS-mode used.

The results of the second part of the study, demonstrated the behaviour of volatile aroma compounds, with their absolute concentrations. The investigated reactions included the degradation of the linear terpenes (linalool, geraniol, nerol, etc), the ethyl esters of fatty
acids and volatile phenols on the one hand; and the formation of the cyclic terpenes (1,4-cineole, 1,8-cineole, terpineol, etc), the norisoprenoids (e.g. TDN and safranal) and the diprotic organic acids esters on the other hand.

In conclusion, we developed a modern protocol for the analysis of the wine aroma compounds and we underlined some key characteristics that a winemaker should take in consideration in the Gewürztraminer production and aging/storage. 

References

1. Carlin, S.; Lotti, C.; Correggi, L.; Mattivi, F.; Arapitsas, P.; Vrhovsek, U. “Measurement of the effect of accelerated aging on the aromatic compounds of Gewürztraminer and Teroldego wines, using a new SPE-GC-MS /MS protocol” Metabolites 2022, 12(2), 180.
2. Versini, G. Sull’aroma Del Vino “Traminer Aromatico” o “Gewürztraminer.” VIGNEVINI 1985, 12, 57–65.
3. Guth, H. Identification of Character Impact Odorants of Different White Wine Varieties. J. Agric. Food Chem. 1997, 45, 3022–3026. 
4. Román, T.; Tonidandel, T.; Larcher, R.; Celotti, E.; Nicolini, G. Importance of Polyfunctional Thiols on Semi-Industrial Gewürztraminer Wines and the Correlation to Technological Treatments. Eur. Food Res. Technol. 2018, 244, 379–386. 
5. Slaghenaufi, D.; Ugliano, M. “Norisoprenoids, Sesquiterpenes and Terpenoids Content of Valpolicella Wines During Aging: Investigating Aroma Potential in Relationship to Evolution of Tobacco and Balsamic Aroma in Aged Wine.” Front. Chem. 2018, 6.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Carlin Silvia1, Lotti Cesare1, Rapaccioli Attilio1, Mattivi, Fulvio1,2, Trenti Gianmaria3, Vrhovsek Urska1 and Arapitsas Panagiotis1,4

1Metabolomics Unit, Research and Innovation Centre Edmund Mach Foundation, Via Edmund Mach 1, 38010 San Michele all’ Adige, Italy
2Department of Cellular Computational and Integrative Biology, University of Trento, Via Sommarive 9, 38123 Povo, Trento, Italy
3Winery, Edmund Mach Foundation, Via Edmund Mach 1, 38010 San Michele all’Adige, Italy
4Department of Wine, Vine and Beverage Sciences, School of Food Science, University of West Attica, Ag. Spyridonos str, Egaleo, 12243 Athens, Greece.

Contact the author

Keywords

fastGC, accelerated aging, storage, terpenes, Cielab

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

IMPACT OF HARVEST DATE ON THE FINE MOLECULAR COMPOSITION OF MUST AND BORDEAUX RED WINE (VAR. MERLOT, CABERNET SAUVIGNON). FOCUS ON ACIDITY AND SENSORY IMPACT AFTER FIVE YEARS OF AGING

Climate change has brought several impacts that are becoming increasingly intense during the last few years and put at risk the quality of the berries or even the plant’s sustainability. Such extreme climatic events impact the composition of the wine while modulating its quality and the consumer preferences (Tempère et al., 2019). The three most important changes that take place in the must are: 1) decrease acidity, 2) increase of the concentration of sugar, hence increase of alcohol in the wine, and 3) modification
of the sensory balance and the development for example of cooked fruit aromas.

Dynamic agrivoltaics, climate protection for grapevine driven by artificial intelligence

The year-on-year rise in temperatures and the increase in extreme weather events due to climate change are already having an impact on agriculture. Among the perennial fruit species, grapevine is already negatively impacted by these events through an acceleration of its phenology, more damage from late frosts or through an increase in the sugar level of the berries (and therefore the alcoholic degree of the wine) and a decrease of acidity, impacting the wine quality. Sun’Agri, in partnership with INRAE, Chambre d’agriculture du Vaucluse, Chambre d’agriculture des Pyrénées-Orientales and IFV, developed a protection system based on dynamic agrivoltaics to protect grapevine. It consists of photovoltaic solar panels positioned above the crop, high enough not to impede the passage of agricultural machinery, and tiltable from +/- 90° to adjust the level of shading on the vineyard. These smart louvers, driven by artificial intelligence (physical models & plant growth models), are steered according to the plant’s needs and provide real climate protection.

Proteomic profiling of grape berry presenting early loss of mesocarp cell vitality

From fruit set to ripening, the grape berry mesocarp experiences a wide range of dynamic physical, physiological, and biochemical changes, such as mesocarp cell death (MCD) and hydraulic isolation. The premature occurrence of such events is a characteristic of the Niagara Rosada (NR) variety, utilised as table grapes and winemaking. In our opinion, the onset of ripening would not cause MCD, but a down-regulation of respiratory enzymes during the early loss of cell viability, while maintaining membrane integrity. For this, we investigated three distinct developmental stages (green (E-L33), veraison (E-L35), and ripe (E-L39)) of NR berries by label-free proteomics, enzymatic respiratory activity and outer mesocarp imaging. Cell wall-modifying proteins were found to accumulate differently throughout ripening, while cytoplasmic membranes continue intact.

Emerging pest pressures in viticulture: a brief review of Argyrotaenia Ljungiana in Eastern Europe

As viticulture faces increasing threats from emerging pests, understanding and dealing with new infestations is crucial.

Survey assessing different practices for mechanical winter pruning in Southern France vineyards

Winter pruning is today the longest operation for hand workers in the vineyard. Over the last years, mechanical pruning practices have become popular in southern France vineyards to respond to competitiveness issue especially for the basic and mid-range wine production. Wine farmers have developed different vineyard management techniques associated with mechanical winter pruning. They sought to be precise or not to control the buds number per vine.