GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Digitising the vineyard: developing new technologies for viticulture in Australia 

Digitising the vineyard: developing new technologies for viticulture in Australia 


Context and purpose of the study – New and developing technologies, that provide sensors and the software systems for using and interpreting them, are becoming pervasive through our lives and society. From smart phones to cars to farm machinery, all contain a range of sensors that are monitored automatically with intelligent software, providing us with the information we need, when we need it. This technological revolution has the potential to monitor all aspects of vineyard activity, assisting growers to make the management choices they need to achieve the outcomes they want. For example, a future vineyard may possess automated imaging that generates a three dimensional model of the vine canopy, highlighting differences from the desired structure and how to use canopy management to improve fruit composition, or generates maps with yield estimates and measurements of berry composition throughout the growing season. That same imaging may also provide whole of vineyard data on vine nutrition or early warning of disease, allowing proactive management on a rapid timescale. We are working with a range of technologies to develop such capabilities for Australian viticulture.
Material and methods – A variety of technologies are being deployed at the whole block scale to address a number of management questions. Early indicators of yield variation are being assessed shortly after budburst, using video imaging with consumer video cameras and machine learning, to determine inflorescence numbers. Canopy growth and structure are being monitored using (i) photogrammetry with drones imagery, (ii) video imaging from vehicles and (iii) a spinning LiDAR system using Simultaneous Localisation and Mapping (SLAM) to register the data. The latter is also being used to develop novel indices of canopy structure. Hyperspectral imaging is being used to segment vine images into their constituent parts and analyse them for fruit and canopy composition and presence of disease. Finally, yield estimation from veraison onwards is being developed using (i) video imaging in daylight, (ii) digital imaging with depth perception and (iii) foliage penetrating (FOPEN) technology. These technologies are being trialed at commercial vineyards in multiple winegrape growing regions of South Australia, concentrating on vines grown with the locally common ‘Australian sprawl’ trellis type, where the fruit are typically highly occluded by leaves, compared to vertical shoot position trellis types.
Results – The technologies described are at various stages of development, from the lab to field application at vineyard scale, but all have produced results with potential commercial application. Initial imaging work with inflorescence counts produced 94% accuracy; a preliminary pipeline to analyse drone imagery with depth data from photogrammetry for estimating vine cover irrespective of cover crop has been developed; a preliminary pipeline to analyse video imagery from the ground and map canopy gap fraction and leaf area index has been developed; the ability to accurately register 3D LiDAR data using SLAM and only basic GPS data has been demonstrated and use the results to develop models of seasonal light interception and indices of canopy light penetration; further, the ability of the FOPEN to determine the presence of fruit within a ‘sprawl’ canopy has been demonstrated.We are continuing to develop these technologies and apply them at the whole block scale in order to produce accurate yield estimates that do not rely on point measurements and spatial maps to allow fine-grained vineyard management decisions.


Publication date: September 28, 2023

Issue: GiESCO 2019

Type: Poster


Everard J. EDWARDS1*, Mark R. THOMAS1, Stephen GENSEMER2, Peyman MOGHADAM3, Thomas LOWE3, Dadong WANG4, Ryan LAGERSTROM4, Chad HARGRAVE5, Jonathon RALSTON5

CSIRO Agriculture & Food, Locked Bag 2, Glen Osmond, SA 5064, Australia
CSIRO Manufacturing, Locked Bag 2, Glen Osmond, SA 5064, Australia
CSIRO Data61, PO BOX 883, Kenmore, QLD 4069, Australia
CSIRO Data61, PO BOX 76, Epping, NSW 1710, Australia
CSIRO Energy, PO BOX 883, Kenmore, QLD 4069, Australia

Contact the author


digital technologies, FOPEN, LiDAR, photogrammetry, proximal sensing, RGB imaging, viticulture


GiESCO | GiESCO 2019 | IVES Conference Series


Related articles…

Physiological and growth reaction of Shiraz/101-14 Mgt to row orientation and soil water status

Advanced knowledge on grapevine row orientation is required to improve establishment, management and outcomes of vineyards on terroirs with different environmental conditions (climate, soil, topography) and in view of a future change to more extreme climatic conditions. The purpose of this study was to determine the combined effect of row orientation, plant water status and ripeness level on the physiological and viticultural reaction of Shiraz/101-14 Mgt.

Effects of mechanical leafing and deficit irrigation on Cabernet Sauvignon grown in warm climate of California

San Joaquin Valley accounts for 40% of wine grape acreage and produces 70% of wine grape in California. Fruit quality is one of most important factors which impact the economical sustainability of farming wine grapes in this region. Due to the recent drought and expected labor cost increase, the wine industry is thrilled to understand how to improve fruit quality while maintaining the yield with less water and labor input. The present study aims to study the interactive effects of mechanical leafing and deficit irrigation on yield and berry compositions of Cabernet Sauvignon grown in warm climate of California.

The effects of cane girdling on berry texture properties and the concentration of some aroma compounds in three table grape cultivars

The marketability of the table grapes is highly influenced by the consumer demand; therefore the market value of the table grapes is mainly characterized by its berry size, colour, taste and texture. Girdling could cause accumulation of several components in plants above the ringing of the phloem including clusters and resulting improved maturity. The aim of the experiments was to examine the effect of girdling on berry texture characteristics and aroma concentration.

Application of a fluorescence-based method to evaluate the ripening process and quality of Pinot Blanc grape

The chemical composition of grape berries at harvest is one of the most important factors that should be considered to produce high quality wines. Among the different chemical classes which characterize the grape juice, the polyphenolic compound, such as flavonoids, contribute to the final taste and color of wines. Recently, an innovative non-destructive method, based on chlorophyll fluorescence, was developed to estimate the phenolic maturity of red grape varieties through the evaluation of anthocyanins accumulated in the berry skin. To date, only few data are available about the application of this method on white grape varieties.

Different yield regulation strategies in semi-minimal-pruned hedge (SMPH) and impact on bunch architecture

Yields in the novel viticulture training system Semi-Minimal-Pruned Hedge (SMPH) are generally higher compared to the traditional Vertical Shoot Positioning (VSP). Excessive yields have a negative impact on the vine and wine quality, which can result in substantial losses in yield in subsequent vintages (alternate bearing) or penalties in fruit quality. Therefore yield regulation is essential. The bunch architecture in SMPH differs from VSP. Generally there is a higher amount but smaller bunches with lower single berry weights in SMPH compared to VSP.