IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Impacts of fumaric acid addition at the bottling on Cabernet Sauvignon wine quality. Comparison with tartaric acid addition.

Impacts of fumaric acid addition at the bottling on Cabernet Sauvignon wine quality. Comparison with tartaric acid addition.

Abstract

Climate change and reduction of inputs are two major challenges for viticulture and oenology. With increasing temperature, wines become less acid and microbiologically less stable (1). Thus, their pHs have to be lowered to avoid higher doses of sulfur dioxide (SO2) for their stabilization, which is against input reduction. Chemical acidification through tartaric acid (TA) addition is one of the most common solutions in the OIV countries members. However, with its high acidifying power, its bacteriostatic properties (2) and its low cost, fumaric acid (FA) could be a good candidate for both chemical acidification and stabilization of low acid wines. Nowadays, the effects of FA addition on red wine quality during the aging are not documented. Thus, this study aims to evaluate the impact of FA addition over the years on the quality of a Cabernet Sauvignon red wine. Here, we present results after six months of wine storage at 15°C.
For this, a sulfite free wine from Cabernet Sauvignon grapes was divided in two batches. One batch was sulfited at 80mg/L (S) and the other one remained non-sulfited (NS). Both batches were treated with FA or TA at two different concentrations (1.25 g/L or 2.5g /L eq. TA). S and NS controls were not acidified. Classical oenological parameters (pH, titratable acidity), color parameters (color intensity, CIELAB), total phenolic compounds (IPT, Folin, total anthocyanins and total tannins), antioxidant capacities (DPPH, CUPRAC) were analyzed after bottling and six months later. FA-acidified wines were compared with controls and TA-acidified wines regarding all parameters. Sensory analyses were also performed on wines.

References

(1) Mira de Orduña, R. Climate Change Associated Effects on Grape and Wine Quality and Production. Food Research International 2010, 43 (7), 1844–1855. https://doi.org/10.1016/j.foodres.2010.05.001.
(2) Morata, A.; Bañuelos, M. A.; López, C.; Song, C.; Vejarano, R.; Loira, I.; Palomero, F.; Lepe, J. A. S. Use of Fumaric Acid to Control PH and Inhibit Malolactic Fermentation in Wines. Food Additives & Contaminants: Part A 2020, 37 (2), 228–238. https://doi.org/10.1080/19440049.2019.1684574.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Poster

Authors

Payan Claire1,2, Gancel Anne-Laure1, Christmann Monika2 and Teissedre Pierre-Louis1

1Unité de recherche Œnologie, EA 4577, USC 1366 INRA, ISVV, Université de Bordeaux,
2Hochschule Geisenheim University

Contact the author

Keywords

Fumaric acid, tartaric acid, color, phenolic compounds, organoleptic quality

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Applicability of grape native yeasts to enhance regional wine typicity

The universalization in wine production has been restricting the imprint of terroir in regional wines, resulting in loss of typicity. Microbes are the main driving force in wine production, conducting fermentation and originating a myriad of metabolites that underly wine aroma. Grape berries harbor an ecological niche composed of filamentous fungi, yeasts and bacteria, which are influenced by the ripening stage, cultivar and region. The research project GrapeMicrobiota gathers a consortium from University of Zaragoza, University of Minho and University of Tours and aims at the isolation of native yeast strains from berries of the wine region Douro, UNESCO World Heritage, towards the production of wines that stand out in the market for their authenticity and for reflecting their region of origin in their aroma.

Sensory quality of wines as a trait in MAS grape vine breeding – sensory insights from multiple vintages in a F1 breeding population

In the context of the three global crises of global warming, loss of biodiversity and environmental pollution, current agricultural practices need to be reconsidered [1]. Viticulture in particular can contribute to this by optimising plant protection [2].

Exploring aromatic profiles and environmental influences on berry chemistry of V. vinifera Riesling and Vitis sp. L’Acadie blanc in Quebec and Nova Scotia, Canada

Wine quality depends on grape biochemical constituents, including sugars, organic acids, amino acids, and bound and free aroma compounds, which are influenced by vineyard location and environmental factors such as temperature and precipitation [1].

About validation of a method for the determination of volatile compounds in spirituous beverages using contained ethanol as a reference substance

The paper proposes an algorithm for validating a modified internal standard method using ethyl alcohol contained in the test sample as a reference substance.

Analysis of the interaction of melatonin with glycolytic proteins in Saccharomyces cerevisiae during alcoholic fermentation 

Melatonin is a bioactive compound with antioxidant properties, that has been found in many fermented beverages, such as beer and wine [1]. Indeed, it has been shown that yeast can synthesize melatonin during alcoholic fermentation, although its role inside the cell, as well as the metabolic pathway involved in its synthesis, is still unclear [1]. Recent studies showed that during fermentation, melatonin interacts with different proteins of the glycolytic pathway in both Saccharomyces and non-Saccharomyces yeast, for instance glyceraldehyde 3-phosphate dehydrogenase, pyruvate kinase or enolase [2].