IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Impacts of fumaric acid addition at the bottling on Cabernet Sauvignon wine quality. Comparison with tartaric acid addition.

Impacts of fumaric acid addition at the bottling on Cabernet Sauvignon wine quality. Comparison with tartaric acid addition.

Abstract

Climate change and reduction of inputs are two major challenges for viticulture and oenology. With increasing temperature, wines become less acid and microbiologically less stable (1). Thus, their pHs have to be lowered to avoid higher doses of sulfur dioxide (SO2) for their stabilization, which is against input reduction. Chemical acidification through tartaric acid (TA) addition is one of the most common solutions in the OIV countries members. However, with its high acidifying power, its bacteriostatic properties (2) and its low cost, fumaric acid (FA) could be a good candidate for both chemical acidification and stabilization of low acid wines. Nowadays, the effects of FA addition on red wine quality during the aging are not documented. Thus, this study aims to evaluate the impact of FA addition over the years on the quality of a Cabernet Sauvignon red wine. Here, we present results after six months of wine storage at 15°C.
For this, a sulfite free wine from Cabernet Sauvignon grapes was divided in two batches. One batch was sulfited at 80mg/L (S) and the other one remained non-sulfited (NS). Both batches were treated with FA or TA at two different concentrations (1.25 g/L or 2.5g /L eq. TA). S and NS controls were not acidified. Classical oenological parameters (pH, titratable acidity), color parameters (color intensity, CIELAB), total phenolic compounds (IPT, Folin, total anthocyanins and total tannins), antioxidant capacities (DPPH, CUPRAC) were analyzed after bottling and six months later. FA-acidified wines were compared with controls and TA-acidified wines regarding all parameters. Sensory analyses were also performed on wines.

References

(1) Mira de Orduña, R. Climate Change Associated Effects on Grape and Wine Quality and Production. Food Research International 2010, 43 (7), 1844–1855. https://doi.org/10.1016/j.foodres.2010.05.001.
(2) Morata, A.; Bañuelos, M. A.; López, C.; Song, C.; Vejarano, R.; Loira, I.; Palomero, F.; Lepe, J. A. S. Use of Fumaric Acid to Control PH and Inhibit Malolactic Fermentation in Wines. Food Additives & Contaminants: Part A 2020, 37 (2), 228–238. https://doi.org/10.1080/19440049.2019.1684574.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Poster

Authors

Payan Claire1,2, Gancel Anne-Laure1, Christmann Monika2 and Teissedre Pierre-Louis1

1Unité de recherche Œnologie, EA 4577, USC 1366 INRA, ISVV, Université de Bordeaux,
2Hochschule Geisenheim University

Contact the author

Keywords

Fumaric acid, tartaric acid, color, phenolic compounds, organoleptic quality

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

LC-MS based metabolomics discriminates premium from varietal chilean Cabernet Sauvignon cv. Wines

Aim of the study was to investigate the metabolomic differences between Chilean Cabernet Sauvignon wines, divided according to their quality in two main groups: “Varietal” and “Premium”, and to point out metabolites tentative markers of their chemical signature and sensorial quality. Initially, 150 (50 x 3 biological replicates) experimental wines were produced by the same semi-industrial process, which covered 8 different Chilean valleys. The wine classification made by experts, divided the wines into two major groups (“Varietal” and “Premium”) and four subgroups (two for each major group). All the samples were analyzed according to a robust LC-MS based untargeted work-flow (Arapitsas et al 2018), and the proposed minimum reporting standards for chemical analysis of the Metabolomics Standards Initiative (Sumner et al 2007)

Herbicide-free systems based on under-the-row grass cover in French vineyards

In a context of reducing herbicide use, the most part of French vineyards are developing permanent grass cover crops on inter-rows alleys, while under the row chemical weeding remains the general case. The setting up of a controlled grass cover crop under the vine row could be a complementary alternative to mechanical weeding – which one is very restrictive – interesting from a technical and economical point of view. The present study aimed at assessing agronomic impacts of grass cover crop under the row in different climatic conditions and production objectives.

The characterization of Vitis vinifera L cv. Cabernet sauvignon: the contribution of Ecklonia maxima seaweed extract

Biostimulants and biofertilizers are considered environmentally friendly and cost-effective alternatives to synthetic fertilizers, plant growth regulators and crop improvement products. Broadly, plant biostimulants are expected to improve nutrient use efficiency, tolerance to abiotic stress, quality traits and availability of nutrients in the soil or rhizosphere. Currently, seaweed extracts account for more than 33% of the total plant biostimulant market. Within this category, Ascophyllum nodosum (AN), is the most widely studied and applied in biostimulant formulations.

WHITE WINES OXIDATIVE STABILITY: A 2-VINTAGE STUDY OF CHARDONNAY CHAMPAGNE BASE WINES AGED ON LEES IN BARRELS

Ultra-premium champagne wines are characterized by a long stay on laths. The goal of the winemaker is to use all possible oenological techniques to keep the aromatic freshness of the future products. To that purpose, some champagne base wines can be aged on lees in oak barrels. However, if it is now acknowledged that such ageing practices contribute to the oxidative stability of dry white wines, no study has been done on Chardonnay champagne base wines designed for a long ageing on laths [1].

Contribution of Piperitone to the mint nuances perceived in the aging bouquet of red Bordeaux wines

During the tasting of a fine, old wine, the aromas generated in the glass are intertwined in an intimate, complex manner, expressing the fragrance of the aging bouquet. This aging bouquet, which develops during bottle storage through a complex transformation process, may result in a broad palette of nuances. Among these, undergrowth, truffle, toasted, spicy, licorice, fresh red- and black-berry fruit and mint descriptors were recently identified as features of its olfactory representation for red Bordeaux wines. Although a targeted chemical approach focusing on volatile sulfur compounds revealed the role played by dimethyl sulfide, 2-furanmethanethiol, and 3-sulfanylhexanol as molecular markers of the typicality of the wine aging bouquet of red Bordeaux wines, its chemical transcription has only partially been elucidated.