IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Peptides diversity and oxidative sensitivity: case of specific optimized inactivated yeasts

Peptides diversity and oxidative sensitivity: case of specific optimized inactivated yeasts


Estimation of the resistance of a wine against oxidation is of great importance for the wine. To that purpose, most of the commonly used chemical assays that are dedicated to estimate the antioxidant (or antiradical) capacity of a wine consist in measuring the capacity of the wine to reduce an oxidative compound or a stable radical. In the must/wine matrix, polyphenols are major compounds likely to react with oxidant or radical, but such reaction generate quinones that then are involved in varietal aroma loss via nucleophilic addition reaction. It raises the paradox that a good antioxidant capacity does not imply a good protection of such sensitive compounds as aromatic compounds which are wine key quality markers.

The authors have developed a methodology focusing on the survival time of a sensitive compound to estimate the oxidative sensitivity of a solution. A labeled nucleophile is monitored by UHPLC-ESI-Q-ToF MS periodically for hours (from 0.5h to 72h) after a chemical initiation of oxidation in wine model solution containing 4-methylcatechol. 7 Cystein containing peptides (alone or in combination) are used to artificially increase the nucleophilic environment (and thus the competition for quinone nucleophilic addition) and estimate the half-life of the labeled nucleophile. In addition, soluble fraction released by different inactivated yeasts are also used as complex source of nucleophiles.

Half-life of the labeled compound is the final expression of several complex mechanisms such as nucleophilic competition, but also oxygen consumption, or catechol reduction.
Independently of the mechanisms, we can observe that increasing the nucleophilic environment improve the half life of the labeled nucleophile. It is notably visible for the specific optimized inactivated yeast which released many cysteine-containing peptides.
Finally, this method relies on the fate of one sensitive nucleophile to estimate the sensitiveness of the whole matrix to oxidation. It estimates the half-life of this compound which allows to compare oxidative sensitivity of different matrices under specific oxidation conditions.


Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article


Bahut Florian1, Sieczkowski Nathalie1, Nikolantonaki Maria1 and Gougeon Régis D.1

1Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, Lallemand SAS, Institut Universitaire de la Vigne et du Vin – Jules Guyot, F-21000 Dijon, 19 rue des Briquetiers, BP 59, 31 702 Blagnac, France

Contact the author


Nucleophile, oxidation, wine, peptide, diversity


IVAS 2022 | IVES Conference Series


Related articles…

An exploration of South Tyrolean Pinot blanc wines and their quality potential in vineyard sites across a range of altitudes

Aim: Pinot Blanc is the third most planted white wine grape in northern Italy’s region of South Tyrol, where small-scale viticultural production permits the examination of the wine’s diverse expressive potential in a small area across a wide range of climatic variables. This study aimed to explore the qualitative potential of Pinot Blanc across a range of climatic variation leading to site-specific terroir expression in a cool climate region.

Georgian vitis germplasm: conservation, research and usage

Grapevine Vitis vinifera L. is a leader perennial crops for the Republic of Georgia, the South Caucasus. This is a region where the first wine making practice was initiated 8.000 years ago (McGovern et al. 2017) and a spot of grape domestication. The country of Georgia holds 525 local and more than 60 breeding varieties – they are preserved in 9 field collections inside the country.The list of recommended wine cultivars contains 34 names, including 27 old autochthonous varieties and covering 94% of the country’s vineyards.

Recognition of terroir in american viticultural areas

Un’ Area di Viticultura Americana, detta AVA, è una regione vinicola delimitata ed è dis­tinguibile da caratteristiche geografiche i cui confini sono stati definiti da regolamenti. Il sistema AVA rappresenta un ‘accettazione del concetto di terroir (terreno), come dimostra­no gli studi che confermano il carattere regionale dei vini AVA e dalla sviluppo di sub­denominazioni più relazionate al terreno.

Residual copper quantification on grapevine’s organs

Copper is listed among the active substances candidates for substitution (Regulation EU 2015/408). Yet still, because of the lack of valid alternatives, the European Commission recently confirmed its usage authorization by limiting the maximum amount to 28 Kg per hectare in 7 years, i.e. an average of 4 kg/year (Reg. EU 2018/1981).This restriction is due to copper accumulation in soils and surface waters both caused by a steady application, especially on perennial crops (Riepert et al., 2013). The aim of this work is to determine if treatments with reduced copper dosages are able to reach different grapevine’s organs, with particular focus on the core of bunches, and if these small amounts can ensure the respect of the legislative prescription, without compromising the phytosanitary conditions of the vineyards, thus grape yields.

Anthocyanin profile is differentially affected by high temperature, elevated CO2 and water deficit in Tempranillo (Vitis vinifera L.) clones

Anthocyanin potential of grape berries is an important quality factor in wine production. Anthocyanin concentration and profile differ among varieties but it also depends on the environmental conditions, which are expected to be greatly modified by climate change in the future. These modifications may significantly modify the biochemical composition of berries at harvest, and thus wine typicity. Among the diverse approaches proposed to reduce the potential negative effects that climate change may have on grape quality, genetic diversity among clones can represent a source of potential candidates to select better adapted plant material for future climatic conditions. The effects of individual and combined factors associated to climate change (increase of temperature, rise of air CO2 concentration and water deficit) on the anthocyanin profile of different clones of Tempranillo that differ in the length of their reproductive cycle were studied. The aim was to highlight those clones more adapted to maintain specific Tempranillo typicity in the future. Fruit-bearing cuttings were grown in controlled conditions under two temperatures (ambient temperature versus ambient temperature + 4ºC), two CO2 levels (400 ppm versus 700 ppm) and two water regimes (well-watered versus water deficit), both in combination or independently, in order to simulate future climate change scenarios. Elevated temperature increased anthocyanin acylation, whereas elevated CO2 and water deficit favoured the accumulation of malvidin derivatives, as well as the acylation and tri-hydroxylation level of anthocyanins. Although the changes in anthocyanin profile observed followed a common pattern among clones, such impact of environmental conditions was especially noticeable in one of the most widely distributed Tempranillo clones, the accession RJ43.