IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Recovery and purification of proteins from grape seed byproducts using proteomic and separative techniques

Recovery and purification of proteins from grape seed byproducts using proteomic and separative techniques

Abstract

Grape seeds account for around 5% of the weight of the whole grape berry, representing approximately 40%-50% of the solid by-products that the different wine industries generate during the winemaking process. Among all the grape seed components, proteins account for 10-13%. The use of these proteins could be of interest in technological applications for the food industry and others.
According to their solubility in different solvents, vegetable seed proteins have been classified into albumins (soluble in water), globulins (soluble in salt), prolamins (soluble in aqueous alcohol) and glutelins (soluble in acid or alkaline solution), respectively.
So far, most of the polypeptide components identified by electrophoretic analysis and mass spectroscopy in grape seed endosperm showed high homology with 11S globulin-like seed storage proteins from other plant species.
The ability of proteins to modulate food properties is highly dependent on their structural features. In this respect, there are still no studies that reveal the three-dimensional structure of these proteins in grape seed using x-ray or nuclear magnetic resonance techniques. However, there are studies using computational techniques for a 7S-type globulin from grape seed.  Therefore, the identification and subsequent elucidation of the morphology of proteins is crucial to define their potential uses and technological applications.
The aim of this work was to identify the different types of grape seed endosperm proteins from the by-product of the wine industry. For this purpose, the industrial by-product was subjected to different extractions to fractionate and purify the proteins into albumins, globulins and prolamins. In addition, quantification of the different fractions was carried out to clarify which type of protein is the majority. To carry out this work, a proteomic study based on SDS-page electrophoresis and mass spectroscopy was developed. These studies will provide new knowledge that will help to develop possible applications of seed proteins in the food industry.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Poster

Authors

Chamizo-González Francisco1, Gordillo Arrobas Belén1, Hereida Francisco J.1, Días Ricardo2 and Freitas Víctor2

1Food Colour and Quality Laboratory, Facultad de Farmacia, Universidad de Sevilla, 41012, Sevilla, Spain
2Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto  

Contact the author

Keywords

Grape seed proteins; globulins, by-products, electrophoresis, mass spectroscopy

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

RED WINE AGING THROUGH 1H-NMR METABOLOMICS

Premium red wines are often aged in oak barrel. This widespread winemaking process is used, among others, to provide roundness and complexity to the wine. The study of wine evolution during barrel aging is crucial to better ensure control of wine quality.
¹H-NMR has already been proved to be an efficient tool to monitor winemaking process [1]. Indeed, it is a non-destructive technique, it requires a small amount of sample and a short time of analysis, yet it provides clues about several chemical families.

Molecular binding mechanisms between grape seed polypeptides and wine anthocyanins by fluorescence spectroscopy and computational techniques

In recent years, proteins endogenous to grape have become of great interest to the wine industry because they represent a new alternative to other biopolymers subjected to more legal restrictions (i.e. animal origin and synthetics) that can be used in technological applications to modulate sensory attributes such as wine color and have a positive impact on wine quality.

High pressure homogenization of wine lees. A tool to streamline the management of wine ageing

Aging on lees (AOL) has been used for wine aging for a long time, thanks to its ability to modify wine composition, improving sensory characteristics and stability. However, the prolonged contact with fermentation lees may increase the risk of developing sensory defects, due to the growth of unwanted microorganisms. Furthermore, AOL requires a large amount of work to manage bâtonnage and for topping up the barrels, significantly increasing production costs.

Testing the effectiveness of Cell-Wall material from grape pomace as fining agent for red wines

Lately several works highlighted the capacity of grape cell-wall material (CWM) to interact with proanthocyanidins (PA), indicating its potential use as fining agent for red wines.1–4 However, those studies were performed by using purified PAs and very high doses of CWM (almost ten-fold higher than those used in wine industry for other commercial fining agents). The present study focuses on the applicability of CWM from Cabernet sauvignon pomace as fining agent for red wines under real winery conditions. Grapes of cultivar Cabernet sauvignon were harvested at three different maturity levels
(unripe, mature, and overripe) and used for red winemaking. The pomace of such vinifications were used as source of CWM, and applied into red wines at two different concentrations: 0.2 g/L and 2.5 g/L.

SIP and save the planet: a sensory and consumer exploration of australian wines made from potentially drought-tolerant white wine grapes

In order to attenuate the effects of climate change on the ability to cultivate quality wine grape vines in Australia, it is essential to adapt to the projected less favourable Australian climate scenarios. One response may be to convert a portion of the current grapevine plantings to those varieties that demand less water and can tolerate increased heat. This investigation aimed to (i) generate sensory profiles and (ii) obtain knowledge about Australian wine consumers’ preferences and opinions of Australian wines made from potentially drought tolerant, white wine grape varieties not traditionally cultivated in Australia. A Rate-All-That-Apply (RATA) sensory panel (n = 49) generated sensory profiles of 44 commercial white wines made from 7 different white grape varieties (Arinto, Fiano, Garganega, Greco, Verdejo, Verdelho and Vermentino), plus two benchmark examples each of an Australian Riesling, Pinot Gris and Chardonnay wine.