IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Recovery and purification of proteins from grape seed byproducts using proteomic and separative techniques

Recovery and purification of proteins from grape seed byproducts using proteomic and separative techniques

Abstract

Grape seeds account for around 5% of the weight of the whole grape berry, representing approximately 40%-50% of the solid by-products that the different wine industries generate during the winemaking process. Among all the grape seed components, proteins account for 10-13%. The use of these proteins could be of interest in technological applications for the food industry and others.
According to their solubility in different solvents, vegetable seed proteins have been classified into albumins (soluble in water), globulins (soluble in salt), prolamins (soluble in aqueous alcohol) and glutelins (soluble in acid or alkaline solution), respectively.
So far, most of the polypeptide components identified by electrophoretic analysis and mass spectroscopy in grape seed endosperm showed high homology with 11S globulin-like seed storage proteins from other plant species.
The ability of proteins to modulate food properties is highly dependent on their structural features. In this respect, there are still no studies that reveal the three-dimensional structure of these proteins in grape seed using x-ray or nuclear magnetic resonance techniques. However, there are studies using computational techniques for a 7S-type globulin from grape seed.  Therefore, the identification and subsequent elucidation of the morphology of proteins is crucial to define their potential uses and technological applications.
The aim of this work was to identify the different types of grape seed endosperm proteins from the by-product of the wine industry. For this purpose, the industrial by-product was subjected to different extractions to fractionate and purify the proteins into albumins, globulins and prolamins. In addition, quantification of the different fractions was carried out to clarify which type of protein is the majority. To carry out this work, a proteomic study based on SDS-page electrophoresis and mass spectroscopy was developed. These studies will provide new knowledge that will help to develop possible applications of seed proteins in the food industry.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Poster

Authors

Chamizo-González Francisco1, Gordillo Arrobas Belén1, Hereida Francisco J.1, Días Ricardo2 and Freitas Víctor2

1Food Colour and Quality Laboratory, Facultad de Farmacia, Universidad de Sevilla, 41012, Sevilla, Spain
2Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto  

Contact the author

Keywords

Grape seed proteins; globulins, by-products, electrophoresis, mass spectroscopy

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

SKIN AND SEED EXTRACTS DIFFERENTLY BEHAVE TOWARDS SALIVARY PROTEINS

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" text_orientation="center" custom_margin="65px||18px||false|false"...

Chitosan from sustainable source: antimicrobial activity against undesirable yeasts for production of low-sulphite wine

The addition of sulphur dioxide (SO2) is the method traditionally used for wine stabilisation, due to its broad spectrum of action against unwanted microorganisms and its ability to prevent oxidative phenomena.

The effects of reducing herbicides in New Zealand vineyards

Herbicides are commonly sprayed in the vine row to prevent competition with vines for water and minerals and to keep weeds from growing into the bunch zone. Sprays are applied before budbreak and reapplied multiple times during the season to keep the undervine bare. There is growing concern about the negative effects of herbicides on humans and the environment, and weeds in New Zealand have developed resistance to herbicides. Therefore, it is imperative that we reduce our reliance on herbicides in viticulture and incorporate methods that do not engender resistance.

Classification of “Valpolicella Superiore” wines in relation to aromatic composition: influence of geographical origin, vintage and aging

The Valpolicella appellation, mainly known for Amarone and Ripasso, is experiencing growing interest in Valpolicella Superiore (VS), a lighter red wine aligning with consumer demand. However, anecdotal evidence suggests different stylistic interpretations of VS, potentially causing consumer confusion.

Second pruning as a strategy to delay maturation in cv. ‘Touriga nacional’ in the Portuguese Douro region

The advance in maturation of wine grapes is an important climate change risk related effect that could affect warm regions like Portuguese Douro Wine Region. Indeed, the climate analysis over the past years registered a decrease in the precipitation, significant higher average temperatures, and a more frequent occurrence of extreme weather events, including heat waves. In these conditions the length from anthesis until maturation is shortened and the uncoupling of technical and phenolic maturity results in berries with higher sugar concentration (and lower acidity), but lower anthocyanins, tannins, and total phenolic concentration, which produce unbalanced wines.
In this work, an innovative strategy of crop forcing, based on forcing vine regrowth after a second pruning of green shoots, was tested, aimed at delaying ripening until the temperature becomes lower and, therefore, preventing acidity loss and increasing anthocyanin-to-sugar ratio. The experiments were conducted in 2019 and 2020 in a commercial vineyard of ‘Touriga Nacional’ located in the Douro Region. Crop forcing was conducted 15 (CF1) to 30 (CF2) days after fruit set. Vines pruned with conventional methods were used as control (CF0). Results confirmed that fruit ripening was shifted from the hot season (August/September), until a cooler period (October through early-November). At harvest, grapevine berries from CF1 and CF2 presented lower pH and higher acidity, than control, with no significant differences in colour intensity and phenolic levels composition. Sugar content was lower in CF2-treated vines in both seasons. However, in CF-treated vines the number and size of clusters were significantly lower (up to 88% reduction) than in control plants. A metabolomics analysis of mature berries from CF-treated vines and control is underway. Crop forcing was indeed effective in producing a more balance berry composition but severely reduced grapevine yield,