IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 A methyl salicylate glycoside mapping of monovarietal Italian white wines.

A methyl salicylate glycoside mapping of monovarietal Italian white wines.

Abstract

Among the main plant secondary metabolites, glycosides have a key-role in wine chemistry. Glycosides are non-volatile complex composed of a non-sugar component (aglycone) bound to one or more carbohydrates. The hydrolysis of glycosides occurs mainly during the fermentation due to the enzymatic activity, and during the storage as a consequence of pH and temperature conditions. In the last scenario, the gradual release of aglycones contributes to the aroma evolution of wine. Methyl salicylate (MeSa) is a plant metabolite known to be a chemical marker of several cryptogamic diseases1; however, it can be also found in wines produced from healthy grapes, whose presence provides a pleasant wintergreen and balsamic nuance, especially in aged wines2,3. This volatile odor-active ester can be found, mainly bound to glycosides, into the skin and the stem of the grapes. MeSa in the free form is frequently present under the sensory threshold while in some red and white varieties it can exceed the olfactory threshold. In our previous works MeSa have been found in relevant content, both in bound and free form, in some genetically related Italian varieties such as Trebbiano di Lugana, Trebbiano di Soave (both employed in the production of Lugana wines), and Verdicchio. In this research a straightforward filter-and-shot LC-MS/MS method was used for the determination of 7 different MeSa glycosides in 246 samples representative of 18 different monovarietal Italian white wines. Thanks to the minimized sample preparation procedure (wines were only filtered at 0.45 µm) this method allowed a reliable quantification of the analytes without wasting time, energy, and solvents, in total agreement with the Green Analytical Chemistry principles. Analysis were performed using an AB Sciex QTrap 6500+ both in positive and negative mode, equipped with a Waters Acquity C18 HSS-T3 150 mm x 2.1 mm x 1.8 µm column working at 0.28 mL*min-1. Glycosides of interest were MeSa 2-O-β-D-glucoside, MeSa 2-O-α-L-arabinopyranosyl(1à6)-β-D glucopyranoside, MeSa 2-O-β-D-xylopyranosyl(1à6)-β-D-glucopyranoside, MeSa 2-O-β-D-apiofuranosyl(1à6)-β-D-glucopyranoside, MeSa 2-O-α-L-rhamnopyranosyl(1à6)-β-D-glucopyranoside, MeSa 2-O-β-D-glucopyranosyl(1à6)-β-D-glucopyranoside, and MeSa 2-O-β-D-xylnopyranosyl(1à2)[O-β-D-xylopyranosyl(1à6)]-O-β-D-glucopyranoside. MeSa glycosides were found in Verdicchio and Lugana wines, in accordance with literature2,3, whereas where found for the first time in Garganega and Erbaluce varieties. The knowledge of the concentration of MeSa glycosides could be considered a potential predictor of the potential balsamic evolution of white wines. Further details are currently under investigation. Acknowledgments: MIUR project PRIN n. 2017RXFFRR.

References

1 Poitou, Xavier, Pascaline Redon, Alexandre Pons, Emilie Bruez, Laurent Delière, Axel Marchal, Céline Cholet, Laurence Geny-Denis, and Philippe Darriet. 2021. “Methyl Salicylate, a Grape and Wine Chemical Marker and Sensory Contributor in Wines Elaborated from Grapes Affected or Not by Cryptogamic Diseases.” Food Chemistry 360 (October): 130120. https://doi.org/10.1016/j.foodchem.2021.130120.
2 Carlin, Silvia, Domenico Masuero, Graziano Guella, Urska Vrhovsek, and Fulvio Mattivi. 2019. “Methyl Salicylate Glycosides in Some Italian Varietal Wines.” Molecules 24 (18): 3260. https://doi.org/10.3390/molecules24183260.
3 Slaghenaufi, Davide, Giovanni Luzzini, Jessica Samaniego Solis, Filippo Forte, and Maurizio Ugliano. 2021. “Two Sides to One Story—Aroma Chemical and Sensory Signature of Lugana and Verdicchio Wines.” Molecules 26 (8): 2127. https://doi.org/10.3390/molecules26082127.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Piergiovanni Maurizio1, Carlin Silvia2, Masuero Domenico2, Rolle Luca3, Rio Segade Susana3, Slaghenaufi Davide4, Ugliano Maurizio4, Marangon Matteo5, Curioni Andrea5, Parpinello Giuseppina Paola6, Versari Andrea6, Piombino Paola7, Pittari Elisabetta7, Mattivi Fulvio1 and Vrhovsek Urska2

1Center Agriculture Food Environment (C3A), University of Trento
2Metabolomics Unit, Research and Innovation Center, Edmund Mach Foundation, Italy
3Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Italy
4Department of Biotechnology, University of Verona, Italy
5Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Italy
6Department of Agricultural and Food Sciences, University of Bologna, Italy
7Department of Agricultural Sciences, University of Naples Federico II, Italy

Contact the author

Keywords

Methyl salicylate, glycosides, aglycones, monovarietal, white-wines 

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Contribution of seeds to red wine phenolic composition

Tannin composition is an important attribute in red wine quality, and it is therefore critical to understand the factors influencing tannin extraction during alcoholic fermentation. Tannins contribute to the mouthfeel of wines, but they also form pigmented polymers...

Quantification of Eugenol in various matrixes from hybrids vines. Case study of Armagnac white spirits production

Nowadays, winemaking is dealing with great challenges, notably climate change, disease resistance and low pesticide inputs, desire for more sustainable agricultural productions and permanent changing of consumer preference.

Control of microbial development in wines elaborated by carbonic maceration

Carbonic Maceration (CM) winemaking is typically used in different European regions. But It is paradoxical that being a traditional processing system and widely used in many wineries, some of the phenomena that take place and the parameters that characterize them are barely known. In this vinification system the intact grape clusters are placed in a carbon dioxide (CO2) enriched medium, and they immediately change from a respiratory metabolism to an anaerobic fermentative metabolism called intracellular fermentation, which is carried out by grape enzymes. But some grapes located in the lower zone of the tank are crushed by the weight of the ones above and release must, which is fermented by yeasts.

The effect of wine matrix on the initial release of volatile compounds and their evolution in the headspace

There is evidence in the literature that non-volatile wine matrix can modify the release and therefore the perception of the compounds involved in wine aroma [1-3].

Environmental sustainability in the production of grappa with the use of mould-resistant grape varieties: the aroma characterisation of distillates

Grappa is the most important italian spirit and its production includes elements of history, tradition, and culture of the transalpine country. In accordance with EU laws, grappa is obtained from the fermentation and distillation of the pomace, eventually added with fermentation lees and water. Grappa is one of the richest fruit distillates in volatile compounds that confer to the product its characteristic flagrance. The aroma is largely due to the volatile compounds present in the raw materials, in particular alcohols, esters and carbonyl compounds formed during the alcoholic fermentation, but also to grape aromas such as terpenols and norisoprenoids, that confers grappa the distinctive floral scents.