IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Influence of oak species on the differentiation of aged brandies using chemometrics approach based on phenolic compounds UHPLC fingerprints

Influence of oak species on the differentiation of aged brandies using chemometrics approach based on phenolic compounds UHPLC fingerprints

Abstract

Oak is the main material used in cooperage for making barrels and wood chips destined to aged spirits and wines. Quercus alba L., Quercus petraea L. and Quercus robur L. are three of the most commonly used oak species in cooperage companies. The geographical origin and botanical species influence the composition of the wood and the subsequent impact on the sensory profile of the product aged in the wooden barrels. Depending on the type of oak in which the wines and spirits are aged, the final products obtained are very different. Phenolic compounds are the main components extracted from the wood during ageing, and they depend on many factors. Botanical species, toasting level, barrel dimension and ageing time are parameters that affect the type and amount of polyphenols that the wood releases into the wines and distillates.
Combining instrumental fingerprints with Chemometrics, known as fingerprinting methodology, is a novel strategy that allows information about the composition of brandy samples to be obtained in a non-selective way, as it is not necessary to identify or quantify the compounds present in the sample. Through a chemometric study of the instrumental fingerprint, it is possible to identify known or unknown areas of the chromatograms characteristic of a particular type of sample. Ultra-High-Performance Liquid Chromatography (UHPLC) was used to acquire the instrumental fingerprints of the phenolic profile at 280 nm and 320 nm of aged brandy samples. The chromatographic fingerprints of more than 100 samples of brandies produced from different distillates and aged in 350-litre barrels from three different oaks, Quercus alba L., Quercus robur L., and Quercus petraea L.; with two different degrees of toasting, medium and light; and during 14 and 28 months were recorded and pre-processed for the chemometric approach centred on patterns recognition.
Unsupervised patterns recognition techniques such as principal component analysis (PCA) and hierarchical cluster analysis (HCA) were applied. The results of these analyses revealed the influence of distillate type, ageing time and toasting level on the natural grouping of samples, being the first one the variable that most affects the natural grouping of samples. Nevertheless, for the same type of distillate, ageing time and toasting level, variables that influence the ageing process, groupings of the samples were observed depending on the type of wood in which they were aged. This methodology is very interesting, since it is not necessary to know or identify all the compounds that appear in the chromatographic profile to determine in this case, whether the brandy is aged in one or another type of oak. The application of the results obtained could lead in the future to a model for the discrimination/classification of brandies, based on the type of oak in which it is aged.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Poster

Authors

Guerrero-Chanivet, María1,2, Ortega-Gavilán Fidel3, Bagur-González M. Gracia3, García-Moreno M. Valme1, Butrón-Benítez Daniel1,2, Guillén-Sánchez Dominico A.1 and Valcárcel-Muñoz Manuel J.2

1Department of Analytical Chemistry, Faculty of Science, IVAGRO, Campus of Puerto Real, University of Cádiz
2Bodegas Fundador, S.L.U.
3University of Granada

Contact the author

Keywords

Brandy, oak, ageing, fingerprint, phenolic compounds

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Ability of lactic acid bacterial laccases to degrade biogenic amines and OTA in wine

Two of the most harmful microbial metabolites for human health that can be present in wines and either fermented or raw foods are biogenic amines (BA) and ochratoxine A (OTA). Winemakers are aware of the need to avoid their presence in wine by using different strategies, one of them is the use of enzymes. Some recombinant laccases have been characterized and revealed as potential tools to degrade these toxic compounds in wine[1], specifically biogenic amines[2].

Diversificazione e valorizzazione di produzioni tipiche sul territorio: I cesanesi

The zone in which the Cesanese vines are cultivated has a secular tradition of red wine­making. This zone is placed between the Simbruini mountains slopes and the surrounding hills and has pedologicai variability but a very homogeneous microclimate.

Nutrient absorption in vines (Vitis vinifera L., cv. Tempranillo blanco) under two water management approaches in a semiarid region of the north of Spain

Two treatments were studied in vines of cv. Tempranillo blanco (Vitis vinifera L.) during the 2012-2018 period in an experimental plot located in Rincón de Soto (La Rioja, Spain). Rainfed treatment (R0) was compared with respect to an irrigation treatment (R2) equivalent to 30% of the crop evapotranspiration (ET0) from fruitset to harvest phenological stages. Pre-veraison irrigation ranged from 43 (2014) to 66 mm/m2 (2018) while post-veraison irrigation ranged from 37 (2017) to 115 mm/m2 (2012).The normalized difference vegetation index (NDVI) was assessed by measures of reflectance, nutrients were determined by analysis of petioles sampled at veraison, grape production was determined at harvest as well as renewable wood weight was assessed at pruning time.

First identification of a glycosylated fraction involved in mushroom-off-flavor in grapes: influence of B. cinerea, powdery mildew and C. subabruptus

An organoleptic defect, called fresh mushrooms off-flavor, appeared in wines and spirits since the 2000’s. Numerous researches demonstrated that octen-3-one, octan-3-ol and octen-3-ol

Investigating three proximal remote sensing techniques for vineyard yield monitoring

Yield monitoring can provide the winegrowers with information for precise production inputs during the season, thereby, ensuring the best possible harvest. Yield estimation is currently achieved through an intensive process that is destructive and time-consuming. However, remote sensing provides a group of proximal technologies and techniques for a non-destructive and less time-consuming method for yield monitoring.The objective of this study was to analyse three different approaches, for measuring grapevine yield close to harvest.