IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Influence of oak species on the differentiation of aged brandies using chemometrics approach based on phenolic compounds UHPLC fingerprints

Influence of oak species on the differentiation of aged brandies using chemometrics approach based on phenolic compounds UHPLC fingerprints

Abstract

Oak is the main material used in cooperage for making barrels and wood chips destined to aged spirits and wines. Quercus alba L., Quercus petraea L. and Quercus robur L. are three of the most commonly used oak species in cooperage companies. The geographical origin and botanical species influence the composition of the wood and the subsequent impact on the sensory profile of the product aged in the wooden barrels. Depending on the type of oak in which the wines and spirits are aged, the final products obtained are very different. Phenolic compounds are the main components extracted from the wood during ageing, and they depend on many factors. Botanical species, toasting level, barrel dimension and ageing time are parameters that affect the type and amount of polyphenols that the wood releases into the wines and distillates.
Combining instrumental fingerprints with Chemometrics, known as fingerprinting methodology, is a novel strategy that allows information about the composition of brandy samples to be obtained in a non-selective way, as it is not necessary to identify or quantify the compounds present in the sample. Through a chemometric study of the instrumental fingerprint, it is possible to identify known or unknown areas of the chromatograms characteristic of a particular type of sample. Ultra-High-Performance Liquid Chromatography (UHPLC) was used to acquire the instrumental fingerprints of the phenolic profile at 280 nm and 320 nm of aged brandy samples. The chromatographic fingerprints of more than 100 samples of brandies produced from different distillates and aged in 350-litre barrels from three different oaks, Quercus alba L., Quercus robur L., and Quercus petraea L.; with two different degrees of toasting, medium and light; and during 14 and 28 months were recorded and pre-processed for the chemometric approach centred on patterns recognition.
Unsupervised patterns recognition techniques such as principal component analysis (PCA) and hierarchical cluster analysis (HCA) were applied. The results of these analyses revealed the influence of distillate type, ageing time and toasting level on the natural grouping of samples, being the first one the variable that most affects the natural grouping of samples. Nevertheless, for the same type of distillate, ageing time and toasting level, variables that influence the ageing process, groupings of the samples were observed depending on the type of wood in which they were aged. This methodology is very interesting, since it is not necessary to know or identify all the compounds that appear in the chromatographic profile to determine in this case, whether the brandy is aged in one or another type of oak. The application of the results obtained could lead in the future to a model for the discrimination/classification of brandies, based on the type of oak in which it is aged.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Poster

Authors

Guerrero-Chanivet, María1,2, Ortega-Gavilán Fidel3, Bagur-González M. Gracia3, García-Moreno M. Valme1, Butrón-Benítez Daniel1,2, Guillén-Sánchez Dominico A.1 and Valcárcel-Muñoz Manuel J.2

1Department of Analytical Chemistry, Faculty of Science, IVAGRO, Campus of Puerto Real, University of Cádiz
2Bodegas Fundador, S.L.U.
3University of Granada

Contact the author

Keywords

Brandy, oak, ageing, fingerprint, phenolic compounds

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Investigation on harvesting period choices for correct interpretation of experimental results

Happens too often in scientific papers to find the same harvesting period of a cultivar, although the used treatment influence a maturity curve of investigated thesis.
This inevitably leads to wrong conclusions when comparing the treatment effects, since obtained on maturity stages more or less far from those technologically correct.

Phylloxera root infection drives vineyard water

Most of the rootstocks used in viticulture today are partly resistant against grape phylloxera (Daktulosphaira vitifoliae Fitch) and host phylloxera on the root system without conspicuous negative impacts on fruit production).

Preliminary field studies of resistance of Georgian grapevine germplasm to powdery mildew (Erysiphe necator)

Erysiphe necator Schwein is a fungus that causes grapevine powdery mildew. It is one of the most problematic pathogens attacking Vitis vinifera L. The pathogen infects all green parts of the plant and reduces grape yield and quality. The suppression on mildew-susceptible cultivars requires intensive use of fungicides against pathogen, which has negative impact on the environment and human health.

Blend wines made of Syrah, Marselan and Tannat, had better color and more phenolic diversity than varietal wines

Background: Elaborating red-wines from grape cultivars with different polyphenolic profiles could improve wine color and its phenolic-dependent characteristics

Inhibition of Oenococcus oeni during alcoholic fermentation by a selected Lactiplantibacillus plantarum strain

The use of selected cultures of the species Lactiplantibacillus plantarum in Oenology has grown in prominence in recent years. While initial applications of this species centred very much around malolactic fermentation (MLF), there is strong evidence to show that certain strains can be harnessed for their bio-protective effects. Unwanted spontaneous MLF during alcoholic fermentation (AF), driven by rogue Oenococcus oeni, is a winemaking deviation that is very difficult to manage when it occurs. This work set out to determine the efficacy of one particular strain of Lactiplantibacillus plantarum(Viniflora® NoVA™ Protect), against this problem in Cabernet Sauvignon must. The work was carried out at commercial scale and in a winery environment and compared the bio-protective culture with the more traditional approach of reducing must pH by the addition of tartaric acid. The combination of both was also investigated. The concentration of both Oenococcus oeni and Lactiplantibacillus plantarum was determined using qPCR. The adventitious Oenococcus oeni showed the most growth during AF in the control wine, whereas in the wines treated with Lactiplantibacillus plantarum a bacteriostatic effect against this species was observed. This effect was comparable to the wines treated with tartaric acid. This has particular commercial relevance for controlling the flora in musts with high pH, or when the addition of tartaric acid is either not permitted or is prohibitive for other reasons.