IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Influence of oak species on the differentiation of aged brandies using chemometrics approach based on phenolic compounds UHPLC fingerprints

Influence of oak species on the differentiation of aged brandies using chemometrics approach based on phenolic compounds UHPLC fingerprints

Abstract

Oak is the main material used in cooperage for making barrels and wood chips destined to aged spirits and wines. Quercus alba L., Quercus petraea L. and Quercus robur L. are three of the most commonly used oak species in cooperage companies. The geographical origin and botanical species influence the composition of the wood and the subsequent impact on the sensory profile of the product aged in the wooden barrels. Depending on the type of oak in which the wines and spirits are aged, the final products obtained are very different. Phenolic compounds are the main components extracted from the wood during ageing, and they depend on many factors. Botanical species, toasting level, barrel dimension and ageing time are parameters that affect the type and amount of polyphenols that the wood releases into the wines and distillates.
Combining instrumental fingerprints with Chemometrics, known as fingerprinting methodology, is a novel strategy that allows information about the composition of brandy samples to be obtained in a non-selective way, as it is not necessary to identify or quantify the compounds present in the sample. Through a chemometric study of the instrumental fingerprint, it is possible to identify known or unknown areas of the chromatograms characteristic of a particular type of sample. Ultra-High-Performance Liquid Chromatography (UHPLC) was used to acquire the instrumental fingerprints of the phenolic profile at 280 nm and 320 nm of aged brandy samples. The chromatographic fingerprints of more than 100 samples of brandies produced from different distillates and aged in 350-litre barrels from three different oaks, Quercus alba L., Quercus robur L., and Quercus petraea L.; with two different degrees of toasting, medium and light; and during 14 and 28 months were recorded and pre-processed for the chemometric approach centred on patterns recognition.
Unsupervised patterns recognition techniques such as principal component analysis (PCA) and hierarchical cluster analysis (HCA) were applied. The results of these analyses revealed the influence of distillate type, ageing time and toasting level on the natural grouping of samples, being the first one the variable that most affects the natural grouping of samples. Nevertheless, for the same type of distillate, ageing time and toasting level, variables that influence the ageing process, groupings of the samples were observed depending on the type of wood in which they were aged. This methodology is very interesting, since it is not necessary to know or identify all the compounds that appear in the chromatographic profile to determine in this case, whether the brandy is aged in one or another type of oak. The application of the results obtained could lead in the future to a model for the discrimination/classification of brandies, based on the type of oak in which it is aged.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Poster

Authors

Guerrero-Chanivet, María1,2, Ortega-Gavilán Fidel3, Bagur-González M. Gracia3, García-Moreno M. Valme1, Butrón-Benítez Daniel1,2, Guillén-Sánchez Dominico A.1 and Valcárcel-Muñoz Manuel J.2

1Department of Analytical Chemistry, Faculty of Science, IVAGRO, Campus of Puerto Real, University of Cádiz
2Bodegas Fundador, S.L.U.
3University of Granada

Contact the author

Keywords

Brandy, oak, ageing, fingerprint, phenolic compounds

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Physiological and growth reaction of Shiraz/101-14 Mgt to row orientation and soil water status

Advanced knowledge on grapevine row orientation is required to improve establishment, management and outcomes of vineyards on terroirs with different environmental conditions (climate, soil, topography) and in view of a future change to more extreme climatic conditions. The purpose of this study was to determine the combined effect of row orientation, plant water status and ripeness level on the physiological and viticultural reaction of Shiraz/101-14 Mgt.

Effects of mechanical leafing and deficit irrigation on Cabernet Sauvignon grown in warm climate of California

San Joaquin Valley accounts for 40% of wine grape acreage and produces 70% of wine grape in California. Fruit quality is one of most important factors which impact the economical sustainability of farming wine grapes in this region. Due to the recent drought and expected labor cost increase, the wine industry is thrilled to understand how to improve fruit quality while maintaining the yield with less water and labor input. The present study aims to study the interactive effects of mechanical leafing and deficit irrigation on yield and berry compositions of Cabernet Sauvignon grown in warm climate of California.

The effects of cane girdling on berry texture properties and the concentration of some aroma compounds in three table grape cultivars

The marketability of the table grapes is highly influenced by the consumer demand; therefore the market value of the table grapes is mainly characterized by its berry size, colour, taste and texture. Girdling could cause accumulation of several components in plants above the ringing of the phloem including clusters and resulting improved maturity. The aim of the experiments was to examine the effect of girdling on berry texture characteristics and aroma concentration.

Application of a fluorescence-based method to evaluate the ripening process and quality of Pinot Blanc grape

The chemical composition of grape berries at harvest is one of the most important factors that should be considered to produce high quality wines. Among the different chemical classes which characterize the grape juice, the polyphenolic compound, such as flavonoids, contribute to the final taste and color of wines. Recently, an innovative non-destructive method, based on chlorophyll fluorescence, was developed to estimate the phenolic maturity of red grape varieties through the evaluation of anthocyanins accumulated in the berry skin. To date, only few data are available about the application of this method on white grape varieties.

Different yield regulation strategies in semi-minimal-pruned hedge (SMPH) and impact on bunch architecture

Yields in the novel viticulture training system Semi-Minimal-Pruned Hedge (SMPH) are generally higher compared to the traditional Vertical Shoot Positioning (VSP). Excessive yields have a negative impact on the vine and wine quality, which can result in substantial losses in yield in subsequent vintages (alternate bearing) or penalties in fruit quality. Therefore yield regulation is essential. The bunch architecture in SMPH differs from VSP. Generally there is a higher amount but smaller bunches with lower single berry weights in SMPH compared to VSP.