IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Influence of oak species on the differentiation of aged brandies using chemometrics approach based on phenolic compounds UHPLC fingerprints

Influence of oak species on the differentiation of aged brandies using chemometrics approach based on phenolic compounds UHPLC fingerprints


Oak is the main material used in cooperage for making barrels and wood chips destined to aged spirits and wines. Quercus alba L., Quercus petraea L. and Quercus robur L. are three of the most commonly used oak species in cooperage companies. The geographical origin and botanical species influence the composition of the wood and the subsequent impact on the sensory profile of the product aged in the wooden barrels. Depending on the type of oak in which the wines and spirits are aged, the final products obtained are very different. Phenolic compounds are the main components extracted from the wood during ageing, and they depend on many factors. Botanical species, toasting level, barrel dimension and ageing time are parameters that affect the type and amount of polyphenols that the wood releases into the wines and distillates.
Combining instrumental fingerprints with Chemometrics, known as fingerprinting methodology, is a novel strategy that allows information about the composition of brandy samples to be obtained in a non-selective way, as it is not necessary to identify or quantify the compounds present in the sample. Through a chemometric study of the instrumental fingerprint, it is possible to identify known or unknown areas of the chromatograms characteristic of a particular type of sample. Ultra-High-Performance Liquid Chromatography (UHPLC) was used to acquire the instrumental fingerprints of the phenolic profile at 280 nm and 320 nm of aged brandy samples. The chromatographic fingerprints of more than 100 samples of brandies produced from different distillates and aged in 350-litre barrels from three different oaks, Quercus alba L., Quercus robur L., and Quercus petraea L.; with two different degrees of toasting, medium and light; and during 14 and 28 months were recorded and pre-processed for the chemometric approach centred on patterns recognition.
Unsupervised patterns recognition techniques such as principal component analysis (PCA) and hierarchical cluster analysis (HCA) were applied. The results of these analyses revealed the influence of distillate type, ageing time and toasting level on the natural grouping of samples, being the first one the variable that most affects the natural grouping of samples. Nevertheless, for the same type of distillate, ageing time and toasting level, variables that influence the ageing process, groupings of the samples were observed depending on the type of wood in which they were aged. This methodology is very interesting, since it is not necessary to know or identify all the compounds that appear in the chromatographic profile to determine in this case, whether the brandy is aged in one or another type of oak. The application of the results obtained could lead in the future to a model for the discrimination/classification of brandies, based on the type of oak in which it is aged.


Publication date: June 23, 2022

Issue: IVAS 2022

Type: Poster


Guerrero-Chanivet, María1,2, Ortega-Gavilán Fidel3, Bagur-González M. Gracia3, García-Moreno M. Valme1, Butrón-Benítez Daniel1,2, Guillén-Sánchez Dominico A.1 and Valcárcel-Muñoz Manuel J.2

1Department of Analytical Chemistry, Faculty of Science, IVAGRO, Campus of Puerto Real, University of Cádiz
2Bodegas Fundador, S.L.U.
3University of Granada

Contact the author


Brandy, oak, ageing, fingerprint, phenolic compounds


IVAS 2022 | IVES Conference Series


Related articles…

Arsenic in soil, leaves, grapes and wines

The presence of arsenic in food and beverages creates concern because of the toxicity of this element, classified as carcinogenic in humans. The arsenic concentration in soil, vine leaves and berries

Grape pomace, an active ingredient at the intestinal level: Updated evidence

Grape pomace (GP) is a winemaking by-product particularly rich in (poly)phenols and dietary fiber, which are the main active compounds responsible for its health-promoting effects. GP-derived products have been proposed to manage cardiovascular risk factors, including endothelial dysfunction, inflammation, hypertension, hyperglycemia, and obesity. Studies on the potential impact of GP on gut health are much more recent. However, it is suggested that, to some extent, this activity of GP as a cardiometabolic health-promoting ingredient would begin in the gastrointestinal tract as GP components (i.e., (poly)phenols and fiber) undergo extensive catabolism, mainly by the action of the intestinal microbiota, that gives rise to low-molecular-weight bioactive compounds that can be absorbed and utilized by the body.

Can minimal pruning be a strategy to adapt grape ripening to global warming?

Berry maturation in warm areas takes place very early, when temperatures are still high and favorable for carbohydrate synthesis and accumulation in the berries, but not as favorable for maintaining high titratable acidity or low pH, or for increasing berry polyphenol content. Different canopy management techniques have been proven to delay berry maturation at the expense of yield (severe canopy trimming, late spring pruning to induce sprouting of dormant buds, etc.). Minimal pruning delays berry ripening by highly increasing yield and by reducing the leaf area to fruit ratio.

The combined use of Lachancea thermotolerans and lactic bacteria in wine technology

The production of most red wines that are sold involves an alcoholic fermentation carried out by yeasts of the Saccharomyces genus, and a subsequent fermentation carried out by lactic bacteria of the Oenococus oeni species after the first one is fully completed. However, the traditional process can face complications, which can be more likely in grape juices with high levels of sugar and pH. Because of climate change, these situations are more frequent in the wine industry. The main hazards in those scenarios are halts or delays in the alcoholic fermentation or the growth of unwanted bacteria while the alcoholic fermentation is not done yet and the wine still has residual sugars.

Legacy of land-cover changes on soil erosion and microbiology in Burgundian vineyards

Soils in vineyards are recognized as complex agrosystems whose characteristics reflect complex interactions between natural factors (lithology, climate, slope, biodiversity) and human activities. To date, most of the unknown lies in an incomplete understanding of soil ecosystems, and specifically in the microbial biodiversity even though soil microbiota is involved in many key functions, such as nutrient cycling and carbon sequestration. Soil biological properties are indicative of soil quality. Therefore, understanding how soil communities are related to soil ecosystem functioning is becoming an essential issue for soil strategy conservation. Here, we propose to assess the importance of land-cover history on the present-day microbiological and physico-chemical properties. The studied area was selected in the Burgundian vineyards (Pernand-Vergelesses, Burgundy, France) where land occupation has been reconstructed over the last 40 years. Soil samples were collected in five areas reflecting various land cover history (forest, vineyards, shifting from forest to vineyards). For each area, physico-chemical parameters (pH, C, N, P, grain size) were measured and DNA was extracted to characterize the abundance and diversity of microbial communities. The obtained results show significant differences in the five areas suggesting that present-day microbial molecular biomass and bacterial taxonomic is partly inherited from past land occupation. Over longer period of time, such study of land-uses legacies may help to better assess ecosystem recovery and the impact of management practices for a better soil quality and vineyards sustainability.