IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Similarities among wine aromas and landscape scents around the vineyard in five Mediterranean sites

Similarities among wine aromas and landscape scents around the vineyard in five Mediterranean sites

Abstract

We compared 68 aroma compounds in wines from 5 vineyards in order to see similarities among the wine aroma and the scent of some of the main native plants from the respective vineyards. The work started with characterising the plant vegetation and the main plants and herbs in the boundaries and field growing in each 5 selected vineyards in Catalonia, Spain. Then 3 wines from each vineyard were analysed for aroma compounds and sensory description. In spring-early summer of 2021, 168 plants were recognised in the prospected sites. We found differences in the plant species diversity that characterised each vineyard landscape. Each vineyard had a particular set of plant species with a unique mix of aroma compounds. We compared the aromas of the wines and the aromas of the plants and found several matches among them. Further studies may offer a better understanding but it seems to be a connection or similarity among the landscape’s aroma and the wines obtained in proximity. Among the compounds with the highest odorant value found are the nosioprenoids ionone and damascenone and terpenes with floral and fruity aromas. This research allows a better understanding of the landscape and wines and to visualize the importance of preserving biodiversity as a management criteria and highlight its value in the vineyards. It can also be a tool for communication between the winemaker and the consumer.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Bartra Enric1, Chamorro Lourdes2, Gomis Anna1 and Elorduy Xoan1

1Catalan Vine and Wine Institute (INCAVI), University Rovira i Virgili Tarragona, Pl. Agora 2, 08720 Vilafranca del Penedes, Barcelona, Spain
2University of Barcelona IrBio

Contact the author

Keywords

wine aroma, regional typicity, biodiversity

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Oak wood barrel tannin potential builds white wines oxidative stability and contributes to wine metabolomics fingerprint

Considerable advances have been made in the chemical characterization of wine metabolites through its holistic study using both targeted and untargeted metabolomics approach. The metabolite pool is subject to an intense molecular dialogue which reinforces the wine complexity even after bottling.

The characterization of Vitis vinifera L cv. Cabernet sauvignon: the contribution of Ecklonia maxima seaweed extract

Biostimulants and biofertilizers are considered environmentally friendly and cost-effective alternatives to synthetic fertilizers, plant growth regulators and crop improvement products. Broadly, plant biostimulants are expected to improve nutrient use efficiency, tolerance to abiotic stress, quality traits and availability of nutrients in the soil or rhizosphere. Currently, seaweed extracts account for more than 33% of the total plant biostimulant market. Within this category, Ascophyllum nodosum (AN), is the most widely studied and applied in biostimulant formulations.

Back to the roots: how an underutilised biotechnological tool can support research to improve grapevine resilience against biotic stressors in an unpredictable future

Hairy roots (HRs) are a symptom of a natural genetic modification by the soil-borne phytopathogen Rhizobium rhizogenes.

EXPLORING THE INFLUENCE OF S. CEREVISIAE MANNOPROTEINS ON WINE ASTRINGENCY AND THE IMPACT OF THEIR POLYSACCHARIDE STRUCTURE

Mannoproteins (MPs) are proteoglycans from the outmost layer of yeast cell walls released into wine during alcoholic fermentation and ageing on lees processes. The use of commercial preparations of mannoproteins as additives to improve wine stability with regards to the crystallization of tartaric salts and to prevent protein haze in the case of white and rosé wines is authorized by the OIV.
Regarding red wines and polyphenols, mannoproteins are described as able to improve their colloidal stability and modulate the astringent effect of condensed tannins. The latter interact with salivary proteins forming insoluble aggregates that cause a loss of lubrication in the mouth and promote a drying and puckering sensation. However, neither the interaction mechanisms involved in mannoproteins capacity to impact astringency nor the structure-function relationships related to this property are fully understood.

Biomarker-based phenotyping of grapevine (vitis spp.) resistance to plasmopara viticola reveals interactions between pyramided resistance loci

Grape downy mildew, caused by plasmopara viticola, is one of the main diseases affecting viticulture worldwide and its control usually relies on frequent sprays with agrochemicals. Grapevine varieties resistant to p. Viticola represent an effective solution to control downy mildew and reduce the environmental impact of viticulture. Loci of resistance to p. Viticola (Rpv) have been introgressed from wild vitis species and some of them, like Rpv1, Rpv3.1 and Rpv10, are currently the most utilized genetic resources in grape breeding.