IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Similarities among wine aromas and landscape scents around the vineyard in five Mediterranean sites

Similarities among wine aromas and landscape scents around the vineyard in five Mediterranean sites

Abstract

We compared 68 aroma compounds in wines from 5 vineyards in order to see similarities among the wine aroma and the scent of some of the main native plants from the respective vineyards. The work started with characterising the plant vegetation and the main plants and herbs in the boundaries and field growing in each 5 selected vineyards in Catalonia, Spain. Then 3 wines from each vineyard were analysed for aroma compounds and sensory description. In spring-early summer of 2021, 168 plants were recognised in the prospected sites. We found differences in the plant species diversity that characterised each vineyard landscape. Each vineyard had a particular set of plant species with a unique mix of aroma compounds. We compared the aromas of the wines and the aromas of the plants and found several matches among them. Further studies may offer a better understanding but it seems to be a connection or similarity among the landscape’s aroma and the wines obtained in proximity. Among the compounds with the highest odorant value found are the nosioprenoids ionone and damascenone and terpenes with floral and fruity aromas. This research allows a better understanding of the landscape and wines and to visualize the importance of preserving biodiversity as a management criteria and highlight its value in the vineyards. It can also be a tool for communication between the winemaker and the consumer.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Bartra Enric1, Chamorro Lourdes2, Gomis Anna1 and Elorduy Xoan1

1Catalan Vine and Wine Institute (INCAVI), University Rovira i Virgili Tarragona, Pl. Agora 2, 08720 Vilafranca del Penedes, Barcelona, Spain
2University of Barcelona IrBio

Contact the author

Keywords

wine aroma, regional typicity, biodiversity

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Application of Hyper Spectral Imaging for early detection of rachis browning in table grapes

Rachis browning is a common abiotic stress that occurs during postharvest storage, leading to a decrease in commercial value of table grapes and resulting in significant economic losses. Its early detection could enable the implementation of preventive strategies. In this report, we show the feasibility of a non-destructive early detection of browning based on Hyper Spectral Imaging (HSI). Furthermore, rachis samples were subjected to transcriptomic analysis to understand putative pathways causing differences in browning within varieties.

“Zonation”: interpretation and estimation of “Great zonation” (GZ) following the base methodology of “GRANDE FILIERA” (GF) (Great chain)

Dans des travaux précédents sur le zonage, on a traité de la « Grande Filière », du « terroir », du « territoire », de la «″Terra »″ (« Terre »”), des « Petits zonages ou sub-zonages », du « Grand Zonage », de la qualité (nous en avons classifié plus de quatre-vingt-dix), des « Grands Objectifs » (GO) de l’activité vitivinicole et des moyens utilisés pour les atteindre. Dans le « GRAND ZONAGE » (GZ) nous avons précisé que pour zoner, nous partons des aspects

Aromatic maturity is a cornerstone of terroir expression in red wine

Harvesting grapes at adequate maturity is key to the production of high-quality red wines. Enologists and wine makers define several types of maturity, including technical maturity, phenolic maturity and aromatic maturity. Technical maturity and phenolic maturity are relatively well documented in the scientific literature, while articles on aromatic maturity are scarcer. This is surprising, because aromatic maturity is, without a doubt, the most important of the three in determining wine quality and typicity (including terroir expression). Optimal terroir expression can be obtained when the different types of maturity are reached at the same time, or within a short time frame. This is more likely to occur when the ripening takes place under mild temperatures, neither too cool, nor too hot. Aromatic expression in wine can be driven, from low to high maturity, by green, herbal, fresh fruit, ripe fruit, jammy fruit, candied fruit or cooked fruit aromas. Green and cooked fruit aromas are not desirable in red wines, while the levels of other aromatic compounds contribute to the typicity of the wine in relation to its origin. Wines produced in cool climates, or on cool soils in temperate climates, are likely to express herbal or fresh fruit aromas; while wines produced under warm climates, or on warm soils in temperate climates, may express ripe fruit, jammy fruit or candied fruit aromas. Growers can optimize terroir expression through their choice of grapevine variety. Early ripening varieties perform better in cool climates and late ripening varieties in warm climates. Additionally, maturity can be advanced or delayed by different canopy management practices or training systems.

How to improve the mouthfeel of wines obtained by excessive tannin extraction

Red wines felt as astringent and bitter generally show high content of tannins due to grape phenolic compounds’ extraction in the maceration process. Among different enological practices, mannoproteins have been shown to improve the mouthfeel of red wines (1) and the color (2,3). In this work, we evaluated the effect of mannoproteins on the mouthfeel profile of Sangiovese wines obtained by excessive tannin extraction.

H-NMR metabolic profiling of wines from three cultivars, three soil types and two contrasting vintages

Differences in wine flavour proceed primarily from grape quality. Environmental factors determined by the climate, soil and training systems modify many grape and wine quality traits. Metabolic profiling based on proton nuclear magnetic resonance (1H-NMR) spectra has been proved to be useful to study multifactorial effects of the vine environment on intricate grape quality traits. The capacity of this method to discriminate the environmental effects on wine has to be demonstrated.