IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Similarities among wine aromas and landscape scents around the vineyard in five Mediterranean sites

Similarities among wine aromas and landscape scents around the vineyard in five Mediterranean sites

Abstract

We compared 68 aroma compounds in wines from 5 vineyards in order to see similarities among the wine aroma and the scent of some of the main native plants from the respective vineyards. The work started with characterising the plant vegetation and the main plants and herbs in the boundaries and field growing in each 5 selected vineyards in Catalonia, Spain. Then 3 wines from each vineyard were analysed for aroma compounds and sensory description. In spring-early summer of 2021, 168 plants were recognised in the prospected sites. We found differences in the plant species diversity that characterised each vineyard landscape. Each vineyard had a particular set of plant species with a unique mix of aroma compounds. We compared the aromas of the wines and the aromas of the plants and found several matches among them. Further studies may offer a better understanding but it seems to be a connection or similarity among the landscape’s aroma and the wines obtained in proximity. Among the compounds with the highest odorant value found are the nosioprenoids ionone and damascenone and terpenes with floral and fruity aromas. This research allows a better understanding of the landscape and wines and to visualize the importance of preserving biodiversity as a management criteria and highlight its value in the vineyards. It can also be a tool for communication between the winemaker and the consumer.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Bartra Enric1, Chamorro Lourdes2, Gomis Anna1 and Elorduy Xoan1

1Catalan Vine and Wine Institute (INCAVI), University Rovira i Virgili Tarragona, Pl. Agora 2, 08720 Vilafranca del Penedes, Barcelona, Spain
2University of Barcelona IrBio

Contact the author

Keywords

wine aroma, regional typicity, biodiversity

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

WHEY protein hydrolysates enhance grapevine resilience to abiotic and biotic stresses

Context and purpose of the study. The growing need for sustainable solutions in viticulture has led to increased interest in biostimulants that can enhance plant resilience to both abiotic and biotic stresses.

To what extent does vine balance actually drive fruit composition?

Context and purpose of the study ‐ Vine balance is a concept describing the relationship between carbon assimilation (usually estimated using a measure of vine vigour, e.g. pruning weight) and its utilisation for fruit production (usually estimated using harvest yield). Manipulating vine balance through leaf area or crop load adjustments affects the proportion of the vine’s total carbohydrate production required to mature the fruit. It is commonly considered that composition of the berry, and resulting wine, is strongly affected by vine balance.

Development and validation of a standardized oxidation assay for the accurate measurement of the ability of different wines to form “de novo” oxidation-related aldehydes

From the standpoint of wine aroma oxidation there are two effects observed: aroma degradation of oxygen sensitive compounds (polyfunctional mercaptans) and the appearance of new substances with high aromatic power (acetaldehyde, methional, phenylacetaldehyde, sotolon, alkenals, isobutanal and 2, 3-metylbutanals) (1-5). According to our experience, Strecker aldehydes are compounds with highest sensory relevance in the oxidative degradation of many wines (5-7).

Influence of grapevine rootstock/scion combination on rhizosphere and root endophytic microbiomes

Soil is a reservoir of microorganisms playing important roles in biogeochemical cycles and interacting with plants whether in the rhizosphere or in the root endosphere. The composition of the microbial communities thus impacts the plant health. Rhizodeposits (such as sugar, organic and amino acids, secondary metabolites, dead root cells …) are released by the roots and influence the communities of rhizospheric microorganisms, acting as signaling compounds or carbon sources for microbes. The composition of root exudates varies depending on several factors including genotypes. As most of the cultivated grapevines worldwide are grafted plants, the aim of this study was to explore the influence of rootstock and scion genotypes on the microbial communities of the rhizosphere and the root endosphere. The work was conducted in the GreffAdapt plot (55 rootstocks x 5 scions), in which the 275 combinations have been planted into 3 blocks designed according to the soil resistivity. Samples of roots and rhizosphere of 10 scion x rootstock combinations were first collected in May among the blocks 2 and 3. The quantities of bacteria, fungi and archaea have been assessed in the rhizosphere by quantitative PCR, and by cultivable methods for bacteria and fungi. The communities of bacteria, fungi and arbuscular mycorrhizal fungi (AMF) was analyzed by Illumina sequencing of 16S rRNA gene, ITS and 28S rRNA gene, respectively. The level of mycorrhization was also evaluated using black ink coloration of newly formed roots harvested in October. The level of bacteria, fungi and archaea was dependent on rootstock and scion genotypes. A block effect was observed, suggesting that the soil characteristics strongly influenced the microorganisms from the rhizosphere and root endosphere. High-throughput sequencing of the different target genes showed different communities of bacteria, fungi and AMF associated with the scion x rootstock combinations. Finally, all the combinations were naturally mycorrhized. The root mycorrhization intensity was influenced by the rootstock genotype, but not by the scion one. Altogether, these results suggest that both rootstock and scion genotypes influence the rhizosphere and root endophytic microbiomes. It would be interesting to analyze the biochemical composition of the rhizodeposition of these genotypes for a better understanding of the processes involved in the modulation of these microbiomes. Moreover, crossing our data with the plant agronomic characteristics could provide insights into their roles on plant fitness.

Methyl jasmonate versus nano-methyl jasmonate. Effect on the tannin composition of monastrell grapes and wines

Tannins are very important for grape and wine quality, since they participate in several organoleptic wine characteristics such as astringency perception, bitterness, and the colour stability. The compositions in tannins in grapes and wines differs between seeds and skins. Tannin seeds contain a higher concentration of tannins than skin and has been associated with a coarse and more tannic notes in wines, by contrast, tannin skin are related to a greater softness in the wines.