IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Climate change, regional adaptation necessities and impact on grape and wine composition – an integrated view on a moving target

Climate change, regional adaptation necessities and impact on grape and wine composition – an integrated view on a moving target


Grapevines are cultivated on 6 out of 7 continents, roughly between latitudes 4° and 56° in the Northern Hemisphere and between 6° and 42° in the Southern Hemisphere across a large diversity of climates (oceanic, warm oceanic, transition temperate, continental, cold continental, Mediterranean, subtropical, attenuated tropical, and arid climates). Accordingly, the range and magnitude of environmental factors differ considerably from region to region and so do the principal environmental constraints for grape production. Due to climate change, temperature, as the primary factor limiting the suitability for wine production is changing causing shifts in the regional distribution of wine producing areas and bringing “new” cool climate producers to the map and may be putting warmer areas at risk. 

The recent publication of the IPCC report (2021, 2022) will be analysed with respect to regional projections relevant for Viticulture and Oenology across the northern and southern hemisphere. The presentation will examine the climate development of various regions across cooler and warmer grape growing areas, and the potential impact on varietal distribution. As a second major environmental factor, water availability is a constraint in many grape growing areas. But projected changes in precipitation (P) rates are only one part of the equation. Since the water cycle is coupled to temperature because temperature plays a large role in the evaporation of water from surfaces or the transpiration of water through plants (ETp), it is the balance between P and ETp which determines water availability and this balance is changing in different directions in various grape growing regions. 

Both temperature and water availability have known effects on fruit composition. Much more difficult to quantify are effects through, for instance, changes in soils. We observe rising temperatures in the upper soil layers in access to the warming observed for air temperature. This will have an impact on the distribution of microbial populations, the decay rate of organic matter, the supply with nutrients, or the storage capacity for soil organic carbon (SOC), thus affecting the emission of greenhouse gases (GHGs) and the viscosity of water in the soil-plant pathway, altering the transport of water. Interactions between micro-organisms in the rhizosphere, the grapevine root system, degradation and fixation of SOC are complex and poorly understood but respond to environmental factors (such as increased soil temperatures), the plant material (rootstock for instance), respectively the cultivation system (for example bio-organic versus conventional, cover crop use versus open tillage for example). 

It is one of the major challenges in projecting analytical changes in the fruit and wine induced by these complex changes of a viticultural system through climate change aside of the main components sugar and acidity. The rising ambient CO2-concentration itself will also contribute to changes in leaf and fruit biochemistry and the interaction with the environmental factors temperature and water may act synergistically or antagonistically, exacerbating or mitigating effects


Publication date: June 22, 2022

Issue: IVAS 2022

Type: Article


Hans Reiner Schultz¹*

¹Hochschule Geisenheim University, von-Lade-Straße 1, D-65366 Geisenheim, Germany

Hans Reiner Schultz¹*

¹Hochschule Geisenheim University, von-Lade-Straße 1, D-65366 Geisenheim, Germany

Contact the author


climate change and regional impacts, regulation programs, adaptation strategies, grape and wine composition 


IVAS 2022 | IVES Conference Series


Related articles…

Physiological and growth reaction of Shiraz/101-14 Mgt to row orientation and soil water status

Advanced knowledge on grapevine row orientation is required to improve establishment, management and outcomes of vineyards on terroirs with different environmental conditions (climate, soil, topography) and in view of a future change to more extreme climatic conditions. The purpose of this study was to determine the combined effect of row orientation, plant water status and ripeness level on the physiological and viticultural reaction of Shiraz/101-14 Mgt.

Effects of mechanical leafing and deficit irrigation on Cabernet Sauvignon grown in warm climate of California

San Joaquin Valley accounts for 40% of wine grape acreage and produces 70% of wine grape in California. Fruit quality is one of most important factors which impact the economical sustainability of farming wine grapes in this region. Due to the recent drought and expected labor cost increase, the wine industry is thrilled to understand how to improve fruit quality while maintaining the yield with less water and labor input. The present study aims to study the interactive effects of mechanical leafing and deficit irrigation on yield and berry compositions of Cabernet Sauvignon grown in warm climate of California.

The effects of cane girdling on berry texture properties and the concentration of some aroma compounds in three table grape cultivars

The marketability of the table grapes is highly influenced by the consumer demand; therefore the market value of the table grapes is mainly characterized by its berry size, colour, taste and texture. Girdling could cause accumulation of several components in plants above the ringing of the phloem including clusters and resulting improved maturity. The aim of the experiments was to examine the effect of girdling on berry texture characteristics and aroma concentration.

Application of a fluorescence-based method to evaluate the ripening process and quality of Pinot Blanc grape

The chemical composition of grape berries at harvest is one of the most important factors that should be considered to produce high quality wines. Among the different chemical classes which characterize the grape juice, the polyphenolic compound, such as flavonoids, contribute to the final taste and color of wines. Recently, an innovative non-destructive method, based on chlorophyll fluorescence, was developed to estimate the phenolic maturity of red grape varieties through the evaluation of anthocyanins accumulated in the berry skin. To date, only few data are available about the application of this method on white grape varieties.

Different yield regulation strategies in semi-minimal-pruned hedge (SMPH) and impact on bunch architecture

Yields in the novel viticulture training system Semi-Minimal-Pruned Hedge (SMPH) are generally higher compared to the traditional Vertical Shoot Positioning (VSP). Excessive yields have a negative impact on the vine and wine quality, which can result in substantial losses in yield in subsequent vintages (alternate bearing) or penalties in fruit quality. Therefore yield regulation is essential. The bunch architecture in SMPH differs from VSP. Generally there is a higher amount but smaller bunches with lower single berry weights in SMPH compared to VSP.