IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Improved analysis of isomeric polyphenol dimers using the 4th dimension of trapped ion mobility spectrometry – mass spectrometry

Improved analysis of isomeric polyphenol dimers using the 4th dimension of trapped ion mobility spectrometry – mass spectrometry

Abstract

Dehydrodicatechins have recently received attention as oxidation markers especially in grapes and wine. Their analysis mainly uses LC-MS/MS which is able to differentiate them from their natural isomers (dimeric procyanidins), based on specific fragments. However, this technique does not distinguish coeluted compounds showing identical mass spectra. The objective of this work was to develop a method using ion mobility (UHPLC−ESI−TIMS−QTOF−MS/MS) to improve the detection and discrimination of dehydrodicatechins and procyanidins and apply it to grape seed extracts. Oxidation dimers of (+)-catechin and/or (−)-epicatechin were prepared from the reaction with a grape polyphenoloxidase (PPO) extract in aqueous medium (pH~5). A commercial grape seed extract was used for the application of the analytical method. Analyses were performed using the following conditions: an UHPLC C18 column, H2O/HCOOH (90/1) and C2H3N/H2O/HCOOH (80/19/1) as mobile phase, ESI in negative mode, TIMS analyser with the inverse reduced mobility (1/K0) range of 1–1.25, 150 ms ramp time , and a mass range of 150–1500 m/z, using collision-induced dissociation at 27 eV. The method was optimized for the detection and separation of dehydrodicatechins and procyanidinins in the ion mobility dimension using standards and mixtures of oxidation products. Approximately thirty dehydrodicatechins were produced in the reaction mixture with PPO. These compounds included B-type and A-type dehydrodicatechins derived from (+)-catechin and/or (−) epicatechin, containing interflavanic bonds of different natures (biphenyl and biphenyl ether) and positions. Our method allowed the separation by ion mobility of several pairs of isomeric dehydrodicatechins coeluted (or partially) in chromatography. Some of them had similar MS/MS fragmentation pattern and would hardly be distinguished by the use of LC-MS/MS alone. Application of the method on a sample of grape seeds revealed the presence of different B-type procyanidins and two dehydrodicatechins which were derivatives of (+)-catechin and (−)-epicatechin, respectively. It is noteworthy that among these compounds a good separation by ion mobility was obtained for a B-type dehydrodicatechin, procyanidin B1 and procyanidin B3 which were partially coeluted in chromatography.

To the best of our knowledge, this is the first time that ion mobility has been applied to the analysis of (+)-catechin and/or (−)-epicatechin-derived dehydrodicatechins. Mainly, the method proposed in this work provided the detection of several isomers of dehydrodicatechins and procyanidins in model solutions and grape seeds, thanks to the additional separation obtained by ion mobility. This method has the potential to be applied on several other natural complex matrices such as wine and by-products for the monitoring of dehydrodicatechins, considered as oxidation markers.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

De Sousa Dias Aécio1, Verbaere Arnaud1, Meudec Emmanuelle1, Deshaies Stacy1, Saucier Cédric1, Cheynier Véronique1 and Sommerer Nicolas2

1SPO, INRAE, Université de Montpellier, Institut Agro Montpellier
2INRAE, PROBE Research Infrastructure, PFP Polyphenol analytical facility

Contact the author

Keywords

ion mobility spectrometry, dehydrodicatechins, flavan-3-ols oxidation markers, procyanidins, grape seeds

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Wine archeochemistry: a multiplatform analytical approach to chemically profile shipwreck wines

The Cape of Storms (also known as Cape of Good Hope) is renowned for harbouring a multitude of shipwrecks due to the inherent treacherous coastline and blistering storms.

Exploring and unravelling the complex toasted oak wood (Q. sp.) volatilome using GCxGC-TOFMS technique

For coopers, toasting process is considered as a crucial step in barrel production where oak wood develops several specific aromatic nuances released to the wine during its maturation

The interaction between wine polyphenolic classes and poly-L-proline is impacted by oxygen

Oxygen plays a key role in the evolution of wine chemistry, within the non-volatile matrix. Polyphenol composition and structure, as well as the process of tannin polymerisation are directly impacted by oxidation, and this can occur during both fermentation and ageing.

Development and application of CRISPR/Cas in grapevine

The development and application of CRISPR (clustered regularly interspaced short palindromic repeats)/Cas (CRISPR-associated protein) technologies have revolutionized genome editing in plants due to its simplicity, high efficiency, and versatility. As an economically important fruit crop worldwide, grapevine genome editing using CRISPR/Cas technologies has also been reported these years. Here we introduce the development briefly of the most popular CRISPR/Cas9 system and also the state-of-the-art CRISPR technologies developed so far. Moreover, we summarize CRISPR/Cas9-mediated applications for gene functional study and trait improvement in grapevine.

Biodiversity and genetic profiling of autochthonous grapevine varieties in Armenia: A key to sustainable viticulture

Armenia, as one of the ancient centers of grapevine domestication, harbors a unique repository of genetic diversity in its indigenous and wild grapevine populations, highlighting a key role in the millennia-lasting history of grape cultivation in the Southern Caucasus (Margaryan et al., 2021).