Macrowine 2021
IVES 9 IVES Conference Series 9 One-year aging of a Sangiovese red wine in tanks of different materials: effect on chemical and sensory characteristics

One-year aging of a Sangiovese red wine in tanks of different materials: effect on chemical and sensory characteristics

Abstract

AIM: The aim of this study was to evaluate how the different tank materials could affect the chemical and sensory characteristics of a Sangiovese red wine during one-year aging. In particular, the impact of earthenware raw amphora, uncoated concrete, epoxy-coated concrete, new oak barrel, used oak barrel, and stainless steel tank on wine color stability was investigated. At six months aging, a part of the wines in each tank was bottled to compare the effect of bottle aging with the tank aging.

METHODS: A Sangiovese red wine from 2018 harvest was aged for twelve months in different tank materials in industrial scale (5 hL) and in triplicate. Phenolic composition, color indices and acetaldehyde content were monitored monthly during twelve months aging. At six, twelve and six months of bottle aging, the wines were also characterized for volatiles, phenolics, elementals profile, tartaric stability and for quantitative descriptive analysis.

RESULTS: After six months aging, phenols, color indices, elemental and volatile compounds differentiated the wines according to the tank materials. Wine aged in new and used oak barrels showed the highest content of polymeric pigments and color indices, together with the wine aged in earthenware raw amphorae, that showed also the highest hue. After twelve months, the wines aged in new and used oak barrels were still the highest in polymeric pigments followed by the earthenware raw amphorae and uncoated concrete tanks. Moreover, the same wine aged six months in uncoated concrete tank and then six months in glass bottle showed the highest content of polymeric pigments

(1). Concerning the elementals composition

(2). the uncoated concrete wine was very high in sodium while the earthenware raw amphora enriched the wine in calcium, iron and aluminum both after six and twelve months. The volatile profiles differentiate the wine according to the tank materials: acetaldehyde content, that has an important role in color stabilization, was the highest in wine aged in used oak barrel at six months, while at twelve months in wines aged in earthenware raw amphora and uncoated concrete, and in bottle for earthenware raw amphora and used oak barrel. Sensory analysis evidenced that the six months aged wines were separated in two groups:

i) the wine in new and used barrels;

ii) the wines aged in stainless steel, epoxy-coated and uncoated concrete, and earthenware raw amphora. After twelve months, the wines aged for six months in tanks and six months in bottles were separate according to the tank materials, while the twelve months tanks aged wines seemed to maintain the same characteristics that they showed at six months aging, and were more similar between them (3).

CONCLUSIONS

The results of this study give new information about the oenological use of different tank materials for the red wine aging with particular interest on wine color stability.

DOI:

Publication date: September 13, 2021

Issue: Macrowine 2021

Type: Article

Authors

Valentina Canuti

Department of Agricultural, Food, Environmental, and Forestry Sciences and Technologies – University of Florence, via Donizetti, 6 – 50144 Firenze (Italy),Francesco MAIOLI, Department of Agricultural, Food, Environmental, and Forestry Sciences and Technologies – University of Florence, via Donizetti, 6 – 50144 Firenze (Italy)  Monica PICCHI, Department of Agricultural, Food, Environmental, and Forestry Sciences and Technologies – University of Florence, via Donizetti, 6 – 50144 Firenze (Italy)  Lorenzo GUERRINI, Department of Agricultural, Food, Environmental, and Forestry Sciences and Technologies – University of Florence, via Donizetti, 6 – 50144 Firenze (Italy)  Alessandro PARENTI, Department of Agricultural, Food, Environmental, and Forestry Sciences and Technologies – University of Florence, via Donizetti, 6 – 50144 Firenze (Italy)  Bruno ZANONI, Department of Agricultural, Food, Environmental, and Forestry Sciences and Technologies – University of Florence, via Donizetti, 6 – 50144 Firenze (Italy)

Contact the author

Keywords

sangiovese, concrete tank, earthenware raw amphorae, volatile profile, phenolic compounds, quantitative descriptive analysis

Citation

Related articles…

Supramolecular approaches to the study of the astringency elicited by wine phenolic compounds

The objective of this study is to review the scientific evidences and to advance into the knowledge of the molecular mechanisms of astringency. Astringency has been described as the drying, roughing and puckering sensation perceived when some food and beverages are tasted (1). The main, but possibly not the only, mechanism for the astringency is the precipitation of salivary proteins (2,3). Between phenolic compounds found in red wines, flavan-3-ols are the group usually related to the development of this sensation. Other compounds, phenolic or not, like anthocyanins, polysaccharides and mannoproteins could act modifying or modulating astringency perception by hindering the interaction between flavanols and salivary proteins either because of their interaction with the flavanols or because of their interaction with the salivary proteins.

Application of ultrasonic and refractometric measurements in enological samples and related model solutions

AIM: The refractive index is a basic optical property of materials and a key tool for the determination of major components in musts, such as sugars

RED WINE AGING THROUGH 1H-NMR METABOLOMICS

Premium red wines are often aged in oak barrel. This widespread winemaking process is used, among others, to provide roundness and complexity to the wine. The study of wine evolution during barrel aging is crucial to better ensure control of wine quality.
¹H-NMR has already been proved to be an efficient tool to monitor winemaking process [1]. Indeed, it is a non-destructive technique, it requires a small amount of sample and a short time of analysis, yet it provides clues about several chemical families.

Towards understanding the mechanisms of resistance to grapevine flavescence dorée

Flavescence dorée (FD) is a very serious grapevine disease, classified as quarantine in europe, where it appeared in the middle of the last century. It is associated with the presence of phytoplasmas, transmitted in the vineyard by a leafhopper of american origin, scaphoideus titanus. FD causes severe wine production losses and often leads to plant death. There are currently no alternative solutions to insecticide treatments against the vector and uprooting diseased vines.

Unravelling the mystery of drought tolerance confered by rootstocks

Climate change will increase the frequency of water deficit experienced in certain european regions, due to increased evapotranspiration and reduced rainfall during the growing cycle. We therefore need to find ways of adaption, including the use of more drought-tolerant planting material. In addition to the varieties used as grafts and involved in the wine ypicity of our wines, rootstocks selection is a relevant way of adapting to more restrictive environmental conditions.